Claim Missing Document
Check
Articles

Analysis of the Effect of Feature Extraction on Sentiment Analysis using BiLSTM: Monkeypox Case Study on X/Twitter Noryasminda; Saragih, Triando Hamonangan; Herteno, Rudy; Faisal, Mohammad Reza; Farmadi, Andi
Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol. 7 No. 2 (2025): May
Publisher : Jurusan Teknik Elektromedik, Politeknik Kesehatan Kemenkes Surabaya, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/ijeeemi.v7i2.73

Abstract

The monkeypox outbreak has again become a global concern due to its widespread spread in various countries. Information related to the disease is widely shared through social media, especially Twitter which is a major source of public opinion. However, the complexity of language and the diverse viewpoints of users often pose challenges in accurately analyzing sentiment. Therefore, sentiment analysis of tweets about monkeypox is important to understand public perception and its impact on the dissemination of health information. This research contributes to identifying the most effective word embedding-based feature extraction method for sentiment analysis of health issues on social media. The purpose of this study is to compare the performance of word embedding methods namely Word2Vec, GloVe, and FastText in sentiment analysis of tweets about monkeypox using the BiLSTM model. Data totaling 1511 tweets were collected through a crawling process using the Twitter API. After the data is collected, manual labeling is done into three sentiment categories, namely positive, negative, and neutral. Furthermore, the data is processed through a preprocessing stage which includes data cleaning, case folding, tokenization, stopword removal, and stemming. The evaluation results show that FastText with BiLSTM produces the highest accuracy of 90%, followed by Word2Vec at 89%, and GloVe at 87%. FastText proved to be more effective in reducing classification errors, especially in distinguishing between negative and positive sentiments due to its ability to capture subword information and broader context. These findings suggest that the use of FastText can improve the accuracy of sentiment analysis, especially on health issues that develop on social media, so that it can support data-driven decision making by relevant parties in handling information dissemination. 
Optimasi Recursive Feature Elimination menggunakan Shapley Additive Explanations dalam Prediksi Cacat Software dengan klasifikasi LightGBM Hartati, Hartati; Herteno, Rudy; Faisal, Mohammad Reza; Indriani, Fatma; Abadi, Friska
JURNAL INFOTEL Vol 17 No 1 (2025): February 2025
Publisher : LPPM INSTITUT TEKNOLOGI TELKOM PURWOKERTO

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20895/infotel.v17i1.1159

Abstract

Software defect refers to issues where the software does not function properly. The mistakes in the software development process are the reasons for software defects. Software defect prediction is performed to ensure the software is defect-free. Machine learning classification is used to classify defects in software. To improve the classification model, it is necessary to select the best features from the dataset. Recursive Feature Elimination (RFE) is a feature selection method. Shapley Additive Explanations (SHAP) is a method that can optimize feature selection algorithms to produce better results. In this research, the popular boosting algorithm LightGBM will be selected as a classifier to predict software defects. Meanwhile, RFE-SHAP will be used for feature selection to identify the best subset of features. The results and discussion show that RFE-SHAP feature selection slightly outperforms RFE, with average AUC values of 0.864 and 0.858, respectively. Moreover, RFE-SHAP produces more significant results in feature selection compared to RFE. The RFE feature selection T-Test results are Pvalue = 0.039 < α = 0.05 and tcount = 3.011 > ttable = 2.776. On the contrary, the RFE-SHAP feature selection T-Test results are Pvalue = 0.000 < α = 0.05 and tcount = 11.91 > ttable = 2.776.
Early Fusion of CNN Features for Multimodal Biometric Authentication from ECG and Fingerprint Using MLP, LSTM, GCN, and GAT Priyatama, Muhammad Abdhi; Nugrahadi, Dodon Turianto; Budiman, Irwan; Farmadi, Andi; Faisal, Mohammad Reza; Purnama, Bedy; Adi, Puput Dani Prasetyo; Ngo, Luu Duc
Jurnal Teknik Informatika (Jutif) Vol. 6 No. 6 (2025): JUTIF Volume 6, Number 6, Desember 2025
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jutif.2025.6.6.5299

Abstract

Traditional authentication methods such as PINs and passwords remain vulnerable to theft and hacking, demanding more secure alternatives. Biometric approaches address these weaknesses, yet unimodal systems like fingerprints or facial recognition are still prone to spoofing and environmental disturbances. This study aims to enhance biometric reliability through a multimodal framework integrating electrocardiogram (ECG) signals and fingerprint images. Fingerprint features were extracted using three deep convolutional networks—VGG16, ResNet50, and DenseNet121—while ECG signals were segmented around the first R-peak to produce feature vectors of varying dimensions. Both modalities were fused at the feature level using early fusion and classified with four deep learning algorithms: Multilayer Perceptron (MLP), Long Short-Term Memory (LSTM), Graph Convolutional Network (GCN), and Graph Attention Network (GAT). Experimental results demonstrated that the combination of VGG16 + LSTM and ResNet50 + LSTM achieved the highest identification accuracy of 98.75 %, while DenseNet121 + MLP yielded comparable performance. MLP and LSTM consistently outperformed GCN and GAT, confirming the suitability of sequential and feed-forward models for fused feature embeddings. By employing R-peak-based ECG segmentation and CNN-driven fingerprint features, the proposed system significantly improves classification stability and robustness. This multimodal biometric design strengthens protection against spoofing and impersonation, providing a scalable and secure authentication solution for high-security applications such as digital payments, healthcare, and IoT devices.
Comparative Performance Evaluation of Linear, Bagging, and Boosting Models Using BorutaSHAP for Software Defect Prediction on NASA MDP Datasets Kartika, Najla Putri; Herteno, Rudy; Budiman, Irwan; Nugrahadi, Dodon Turianto; Abadi, Friska; Ahmad, Umar Ali; Faisal, Mohammad Reza
Jurnal Teknik Informatika (Jutif) Vol. 6 No. 6 (2025): JUTIF Volume 6, Number 6, Desember 2025
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jutif.2025.6.6.5393

Abstract

Software defect prediction aims to identify potentially defective modules early on in order to improve software reliability and reduce maintenance costs. However, challenges such as high feature dimensions, irrelevant metrics, and class imbalance often reduce the performance of prediction models. This research aims to compare the performance of three classification model groups—linear, bagging, and boosting—combined with the BorutaSHAP feature selection method to improve prediction stability and interpretability. A total of twelve datasets from the NASA Metrics Data Program (MDP) were used as test references. The research stages included data preprocessing, class balancing using the Synthetic Minority Oversampling Technique (SMOTE), feature selection with BorutaSHAP, and model training using five algorithms, namely Logistic Regression, Linear SVC, Random Forest, Extra Trees, and XGBoost. The evaluation was conducted with Stratified 5-Fold Cross-Validation using the F1-score and Area Under the Curve (AUC) metrics. The experimental results showed that tree-based ensemble models provided the most consistent performance, with Extra Trees recording the highest average AUC of 0.794 ± 0.05, followed by Random Forest (0.783 ± 0.06). The XGBoost model provided the best results on the PC4 dataset (AUC = 0.937 ± 0.008), demonstrating its ability to handle complex data patterns. These findings prove that BorutaSHAP is effective in filtering relevant features, improving classification reliability, and strengthening transparency and interpretability in the Explainable Artificial Intelligence (XAI) framework for software quality improvement.
Enhancing Classification of Self-Reported Monkeypox Symptoms on Social Media Using Term Frequency-Inverse Document Frequency Features and Graph Attention Networks Rizian, Rizailo Akfa; Budiman, Irwan; Faisal, Mohammad Reza; Kartini, Dwi; Indriani, Fatma; Ahmad, Umar Ali
Jurnal Teknik Informatika (Jutif) Vol. 6 No. 6 (2025): JUTIF Volume 6, Number 6, Desember 2025
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jutif.2025.6.6.5482

Abstract

Early detection of infectious diseases plays a crucial role in minimizing their spread and enabling timely intervention. In the digital era, social media has emerged as a valuable source of real-time health information, where individuals often share self-reported symptoms that can serve as early warning signals for disease outbreaks. However, textual data from social media is typically unstructured, noisy, and contextually diverse, posing challenges for conventional text classification methods. This study proposes a hybrid model combining Term Frequency–Inverse Document Frequency (TF-IDF) feature representation with a Graph Attention Network (GAT) to enhance the early detection of Monkeypox-related self-reported symptoms on Indonesian social media. A dataset of 3,200 tweets was collected through Tweet-Harvest and subsequently preprocessed and manually labeled, producing a balanced distribution between positive (51%) and negative (49%) samples. TF-IDF vectors were used to construct a document similarity graph via the k-Nearest Neighbors (k-NN) method with cosine similarity, enabling GAT to leverage both textual and relational information across posts. The model’s performance was evaluated using accuracy, precision, recall, and macro-F1, with macro-F1 serving as the primary indicator. The proposed TF-IDF + GAT model achieved 93.07% accuracy and a macro-F1 score of 93.06%, outperforming baseline classifiers such as CNN (92.16% macro-F1), SVM (85.73%), Logistic Regression (84.89%). These findings demonstrate the effectiveness of integrating classical text representations with graph-based neural architectures for improving social media based disease surveillance and supporting early epidemic response strategies.
KNN-MVO-SMOTE Algorithm for Air Quality Imbalanced Data Classification Rizky, Muhammad Miftahur; Mazdadi, Muhammad Itqan; Muliadi, Muliadi; Faisal, Mohammad Reza; Indriani, Fatma; Rozaq, Hasri Akbar Awal; Yildiz, Oktay
International Journal of Advances in Data and Information Systems Vol. 6 No. 3 (2025): December 2025 - International Journal of Advances in Data and Information Syste
Publisher : Indonesian Scientific Journal

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59395/ijadis.v6i3.1424

Abstract

This research addresses air pollution, a pressing global issue influenced by geographic and temporal factors, using advanced machine-learning techniques to enhance air quality classification. By integrating the K-Nearest Neighbors (KNN) algorithm with the Synthetic Minority Over-sampling Technique (SMOTE) and Multi-Verse Optimization (MVO), we tackle challenges like data imbalance and parameter optimization. Our novel approach, which combines SMOTE and MVO within the KNN framework, has significantly increased classification accuracy to 97%, substantially improving over previous methods. The dataset includes diverse geographic and temporal data, with potential biases acknowledged and addressed. This study highlights the efficacy of merging MVO and SMOTE to optimize classification models, making a substantial contribution to environmental analysis and the fight against air pollution. Future research will explore AutoML technology to improve algorithmic optimization, offering more efficient and adaptive solutions. This pioneering effort emphasizes the critical role of technological innovation in tackling environmental challenges and marks a significant advancement in combating global air pollution.
Deep Learning-Based Lung Sound Classification Using Mel-Spectrogram Features for Early Detection of Respiratory Diseases Yabani, Midfai; Faisal, Mohammad Reza; Indriani, Fatma; Nugrahadi, Dodon Turianto; Kartini, Dwi; Satou, Kenji
Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 8 No 1 (2026): January
Publisher : Department of Electromedical Engineering, POLTEKKES KEMENKES SURABAYA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/jeeemi.v8i1.1256

Abstract

Respiratory diseases such as asthma, chronic obstructive pulmonary disease, and pneumonia remain among the leading causes of death globally. Traditional diagnostic approaches, including auscultation, rely heavily on the subjective expertise of medical practitioners and the quality of the instruments used. Recent advancements in artificial intelligence offer promising alternatives for automated lung sound analysis. However, audio is an unstructured data format that must be converted into a suitable format for AI algorithms. Another significant challenge lies in the imbalanced class distribution within available datasets, which can adversely affect classification performance and model reliability. This study applied several comprehensive preprocessing techniques, including random undersampling to address data imbalance, resampling audio at 4000 Hz for standardization, and standardizing audio duration to 2.7 seconds for consistency. Feature extraction was then performed using the Mel Spectrogram method, converting audio signals into image representations to serve as input for classification algorithms based on deep learning architectures. To determine optimal performance characteristics, various Convolutional Neural Network (CNN) architectures were systematically evaluated, including LeNet-5, AlexNet, VGG-16, VGG-19, ResNet-50, and ResNet-152. VGG-16 achieved the highest classification accuracy of the tested models at 75.5%, demonstrating superior performance in respiratory sound classification tasks. This study demonstrates the potential of AI-based lung sound classification systems as a complementary diagnostic tool for healthcare professionals and the general public in supporting early identification of respiratory abnormalities and diseases. The findings suggest that automated lung sound analysis could enhance diagnostic accessibility and provide more valuable support for clinical decision-making in respiratory healthcare applications
Dynamic Decay Adjustment in Radial Basis Function Networks: Does It Improve Software Defect Prediction? Kamil, Hawariul; Faisal, Mohammad Reza; Farmadi, Andi; Hertono, Rudy; Saputro, Setyo Wahyu
International Journal of Electronics and Communications Systems Vol. 5 No. 2 (2025): International Journal of Electronics and Communications System
Publisher : Universitas Islam Negeri Raden Intan Lampung, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24042/ijecs.v5i2.29288

Abstract

Software quality depends heavily on the early detection of potentially defective modules, yet the complexity of software metrics and class imbalance often leads to inconsistent prediction performance. This study aims to compare the effectiveness of Radial Basis Function Neural Network (RBFNN) and RBFNN with Dynamic Decay Adjustment (RBFNN-DDA) in predicting software defects using five NASA PROMISE datasets (CM1, KC1, MC1, MW1, and PC1). The research employed quantitative experimentation through data normalization, a 70 to 30 train–test split, and model evaluation across maximum iterations ranging from 200 to 1,000. Model performance was assessed using Accuracy, Precision, Recall, F1 Score, and AUC. The results indicate that RBFNN provides higher Recall and F1 Score, making it better at identifying defective modules, although its performance is less stable. Meanwhile, RBFNN-DDA yields more consistent performance with higher Precision, Accuracy, and AUC on imbalanced datasets, albeit with lower Recall. Both models reached performance saturation at 200 until 400 iterations, showing minimal improvement at higher iteration counts. The findings imply the need for balancing sensitivity and stability when selecting defect prediction models, particularly in environments with severe class imbalance
Telemedicine and AI in Remote Prediabetes Monitoring Among Adolescents Solechah, Siti Aisyah; Saputro, Setyo Wahyu; Adini, Muhammad Hifdzi; Faisal, Mohammad Reza; Kurniawan, Erick; Umiatin, Umiatin
Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol. 8 No. 1 (2026): February
Publisher : Jurusan Teknik Elektromedik, Politeknik Kesehatan Kemenkes Surabaya, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/ijeeemi.v8i1.283

Abstract

The escalating prevalence of prediabetes in Indonesia, particularly among children and adolescents, necessitates the development of lightweight, adaptable, and cost-effective telemedicine solutions for the noninvasive monitoring of blood glucose levels. Existing systems predominantly employ machine learning and deep learning approaches that require substantial computational resources and stable internet connectivity, limiting their applicability in regions with constrained digital infrastructure. The objective of this study is to develop an artificial intelligence (AI)–driven telemedicine system that employs an expert system to determine prediabetes status by utilizing commercially available smartwatches as noninvasive optical sensors. The methodological approach includes an examination of smartwatch capabilities to identify Bluetooth Low Energy (BLE) sensors, service architectures, and the Generic Attribute Profile (GATT); the development of a Rule-Based Reasoning (RBR) expert system to determine prediabetes status using Fasting Plasma Glucose (FPG) and Postprandial Plasma Glucose (PP2) measurements; and the application of Rapid Application Development (RAD) methods in the development of Flutter-based mobile applications and Laravel Inertia Vue–based web applications. The results of this study demonstrate that the telemedicine system operates in both offline and online modes and incorporates AI functionality on mobile devices and servers without requiring extensive computational resources. All system functionalities successfully passed testing, and the expert system achieved 100% accuracy in determining prediabetes status. In conclusion, the integration of telemedicine and AI-based expert systems provides an effective, economical, and flexible solution that can be widely implemented in Indonesia to reduce the increasing incidence of prediabetes through continuous digital health monitoring.
Co-Authors Abdul Gafur Abdullayev, Vugar Achmad Zainudin Nur Adawiyah, Laila Adi, Puput Dani Prasetyo Adini, Muhammad Hifdzi Admi Syarif Aflaha, Rahmina Ulfah Ahmad Rusadi Ahmad Rusadi Arrahimi - Universitas Lambung Mangkurat) Ahmad Rusadi Arrahimi - Universitas Lambung Mangkurat) Andi Farmadi Andi Farmadi Angga Maulana Akbar Annisa Rizqiana Arie Sapta Nugraha Arif, Nuuruddin Hamid Arifin Hidayat Azizah, Azkiya Nur Bachtiar, Adam Mukharil Bahriddin Abapihi Bayu Hadi Sudrajat Bedy Purnama Dewi Sri Susanti Dike Bayu Magfira, Dike Bayu Djordi Hadibaya Dodon Turianto Nugrahadi Dwi Kartini Dwi Kartini Dwi Kartini Dwi Kartini, Dwi Emma Andini Erick Kurniawan Fatma Indriani Fatma Indriani Fatma Indriani Fitra Ahya Mubarok Fitriani, Karlina Elreine Fitriyana, Silfia Friska Abadi Friska Abadi Friska Abadi Fuad Muhajirin Farid Ghinaya, Helma Halim, Kevin Yudhaprawira Hanif Rahardian Hartati Hartati Herteno, Rudi Herteno, Rudy Hertono, Rudy Irwan Budiman Irwan Budiman Irwan Budiman Ivan Sitohang Julius Tunggono Jumadi Mabe Parenreng Junaidi, Ridha Fahmi Kamil, Hawariul Kartika, Najla Putri Keswani, Ryan Rhiveldi Kevin Yudhaprawira Halim Kurnianingsih, Nia Lilies Handayani Liling Triyasmono Lisnawati Lumbanraja, Favorisen R Mahmud Mahmud Maisarah Maisarah, Maisarah Mauldy Laya Mera Kartika Delimayanti Miftahul Muhaemen Muflih Ihza Rifatama Muhamad Ihsanul Qamil Muhammad Al Ichsan Nur Rizqi Said Muhammad Alkaff Muhammad Angga Wiratama Muhammad Fauzan Nafiz Muhammad Haekal Muhammad Haekal Muhammad Iqbal Muhammad Irfan Saputra Muhammad Itqan Mazdadi Muhammad Janawi Muhammad Khairi Ihsan Muhammad Mada Muhammad Mursyidan Amini Muhammad Rizky Adriansyah Muhammad Rusli Muhammad Sholih Afif Muhammad Zaien MUJIZAT KAWAROE Muliadi Muliadi Muliadi Muliadi Aziz Muliadi Muliadi Muliadi Muliadi Muliadi Muliadi Mustofa, Fahmi Charish Nafiz, Muhammad Fauzan Ngo, Luu Duc Noordyanti, Erna Nor Indrani Noryasminda Nugrahadi, Dodon Nurlatifah Amini Nursyifa Azizah Oni Soesanto Prastya, Septyan Eka Pratama, Muhammad Yoga Adha Priyatama, Muhammad Abdhi Purnajaya, Akhmad Rezki Putri Nabella Radityo Adi Nugroho Radityo Adi Nugroho Rahayu, Fenny Winda Rahmad Ubaidillah Rahmat Ramadhani Rahmat Ramadhani Ratna Septia Devi RAUDLATUL MUNAWARAH Reina Alya Rahma Reza Rendian Septiawan Riadi, Agus Teguh Riadi, Putri Agustina Rinaldi Riza Susanto Banner Riza, Yusi Rizal, Muhammad Nur Rizian, Rizailo Akfa Rizki, M. Alfi Rizky Ananda, Muhammad Rizky, Muhammad Hevny Rizky, Muhammad Miftahur Rozaq, Hasri Akbar Awal Rudy Herteno Rudy Herteno Rudy Herteno Rudy Herteno Said, Muhammad Al Ichsan Nur Rizqi SALLY LUTFIANI Salsabila Anjani Saputro, Setyo Wahyu Saragih, Triando Hamonangan Sarah Monika Nooralifa Sari, Risna Satou, Kenji Sa’diah, Halimatus Septyan Eka Prastya Setyo Wahyu Saputro Siti Aisyah Solechah Solly Aryza Sri Redjeki Sri Redjeki Sugiarto, Iyon Titok Sulastri Norindah Sari Suryadi, Mulia Kevin Syamsiar, Syamsiar Tri Mulyani Triando Hamonangan Saragih Umar Ali Ahmad Umiatin, Umiatin Utami, Juliyatin Putri Uthami, Mariza Vina Maulida, Vina Wahyu Caesarendra Wahyu Dwi Styadi Wahyudi Wahyudi Wildan Panji Tresna Winda Agustina Yabani, Midfai Yeni Rahkmawati Yenni Rahman YILDIZ, Oktay Yudha Sulistiyo Wibowo Yunida, Rahmi