Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control

Integrating Ensemble Learning and Information Gain for Malware Detection based on Static and Dynamic Features Sani, Ramadhan Rakhmat; Rafrastara, Fauzi Adi; Ghozi, Wildanil
Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control Vol. 10, No. 1, February 2025
Publisher : Universitas Muhammadiyah Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22219/kinetik.v10i1.2051

Abstract

The rapid advancement of malware poses a significant threat to devices, like personal computers and mobile phones. One of the most serious threats commonly faced is malicious software, including viruses, worms, trojan horses, and ransomware. Conventional antivirus software is becoming ineffective against the ever-evolving nature of malware, which can now take on various forms like polymorphic, metamorphic, and oligomorphic variants. These advanced malware types can not only replicate and distribute themselves, but also create unique fingerprints for each offspring. To address this challenge, a new generation of antivirus software based on machine learning is needed. This intelligent approach can detect malware based on its behavior, rather than relying on outdated fingerprint-based methods. This study explored the integration of machine learning models for malware detection using various ensemble algorithms and feature selection techniques. The study compared three ensemble algorithms: Gradient Boosting, Random Forest, and AdaBoost. It used Information Gain for feature selection, analyzing 21 features. Additionally, the study employed a public dataset called ‘Malware Static and Dynamic Features VxHeaven and VirusTotal Data Set’, which encompasses both static and dynamic malware features. The results demonstrate that the Gradient Boosting algorithm combined with Information Gain feature selection achieved the highest performance, reaching an accuracy and F1-Score of 99.2%.
XGBoost-Powered Ransomware Detection: A Gradient-Based Machine Learning Approach for Robust Performance Ghozi, Wildanil; Lestiawan, Heru; Sani, Ramadhan Rakhmat; Hussein, Jassim Nadheer; Rafrastara, Fauzi Adi
Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control Vol. 10, No. 4, November 2025
Publisher : Universitas Muhammadiyah Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22219/kinetik.v10i4.2405

Abstract

Ransomware remains a rapidly evolving cyber threat, causing substantial financial and operational disruptions globally. Traditional signature-based detection systems are ineffective against sophisticated, zero-day attacks due to their static nature. Consequently, machine learning-based approaches offer a more effective and adaptive alternative. This study proposes an approach utilizing XGBoost for highly effective ransomware detection. We conducted a rigorous comparative analysis of prominent ensemble learning algorithms—XGBoost, Random Forest, Gradient Boosting, and AdaBoost—on the RISS Ransomware Dataset, comprising 1,524 instances. Our experimental results unequivocally demonstrate XGBoost as the superior ensemble model, achieving an impressive 97.60% accuracy and F1-Score. This performance surpassed Gradient Boosting (97.20%), Random Forest (96.94%), and AdaBoost (96.50%). Furthermore, this study benchmarked XGBoost against established state-of-the-art (SOTA) methods, including Support Vector Machine (SVM) and the SA-CNN-IS deep learning approach. The comprehensive results underscore the core contribution of this study: by applying XGBoost with a carefully structured machine learning pipeline, our approach consistently outperforms two state-of-the-art methods (SVM and SA-CNN-IS) as well as other ensemble algorithms. This highlights the critical role of methodological precision in maximizing detection performance against evolving ransomware threats.
Co-Authors ., Junta Zeniarza ., Junta Zeniarza Abdussalam Abdussalam, Abdussalam Abu Salam Agung Priyo Utomo, Rino Ahmad Khotibul Umam, Ahmad Khotibul Aisyah, Ade Nurul Al zami, Farrikh Alzami, Farrikh Ardytha Luthfiarta Arta Moro Sundjaja, Arta Moro Asih Rohmani Asih Rohmani Asih Rohmani, Asih Atha Rohmatullah, Fawwaz Bernadette Chayeenee Norman , Maria Budi Harjo Budi, Setyo Candra Irawan Catur Supriyanto Caturkusuma, Resha Meiranadi Christy Atika Sari Defri Kurniawan Defri Kurniawan Diana Aqmala Doheir, Mohamed Dwi Puji Prabowo, Dwi Puji Eko Hari Rachmawanto Elkaf Rahmawan Pramudya Erika Devi Udayanti Fahmi Amiq Farah Syadza Mufidah Farrikh Al Zami Farrikh Al Zami Fauzi Adi Rafrastara Florentina Esti Nilasari Florentina Esti Nilawati Guruh Fajar Shidik Hanny Haryanto Harun Al Azies Heru Lestiawan Hussein, Jasim Nadheer Hussein, Jassim Nadheer Ifan Rizqa Ignasius, Darnell Ika Novita Dewi Ikhwansyah Kurniawan Indra Gamayanto ISWAHYUDI ISWAHYUDI Ivan Bayu Fachreza Junta Zeniarja Karima, Nida Aulia Karin, Tan Regina Kiki Widia Kurniawan, Defri L. Budi Handoko Maszuda, Akbar Alvian Megantara, Rama Aria Melati Anggreni Sitorus Muhammad Naufal, Muhammad Nadya Azizah Novita Dewi , Ika Nugraha, Purwa Esti Pangesti, Galih Mentari Paramita, Cinantya Pergiwati, Dewi Pratiwi, Yunita Ayu Priyo Utomo, Rino Agung Pulung Nurtantio Andono Purwanto Purwanto Ramadhani, Dwi Arya Ricardus Anggi Pramunendar Richard Emmerig Rifa’i, Muhammad Nabhan S. Sukamto, Titien Sarker, Md. Kamruzzaman Sasono Wibowo Sendi Novianto Sendi Novianto Sendi Novianto Setyo Budi Setyo Budi Silla, Hercio Venceslau Sirait, Tamsir Hasudungan Sri Winarno Sri Winarno Suharnawi Suharnawi Suharnawi Suharnawi Suharnawi Sukamto, Titien S. Sukamto, Titien Suhartini Sulistyono, Teguh Syahrizal, Muhammad Iqbal Titien Suhartini Sukamto Titien Suhartini Sukamto Utomo, Danang Wahyu Wibowo, Isro' Rizky Wildanil Ghozi Wulan Puspita Loka Yani Parti Astuti Yanuaresta, Dianna Yupie Kusumawati Zahro, Azzula Cerliana Zami, Farrikh Al