Claim Missing Document
Check
Articles

Deteksi Serangan Denial of Service (DoS) dan Spoofing pada Internet of Vehicles menggunakan Algoritma k-Nearest Neighbor (kNN) Ghozi, Wildanil; Rafrastara, Fauzi Adi; Sani, Ramadhan Rakhmat; Abdussalam, Abdussalam
Jurnal Informatika dan Rekayasa Perangkat Lunak Vol 6, No 2 (2024): September
Publisher : Universitas Wahid Hasyim

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36499/jinrpl.v6i2.11309

Abstract

Implementasi teknologi Internet of Things pada kendaraan bermotor mengalami peningkatan dari waktu ke waktu dan dikenal dengan istilah Internet of Vehicle (IoV). IoV semakin dibutuhkan masyarakat karena dapat menghadirkan kenyamanan, keamanan, dan efisiensi dalam berkendara. Sayangnya, penggunaan teknologi internet pada IoV justru memunculkan potensi serangan siber, seperti Denial of Service (DoS) dan Spoofing. Intrusion Detection System pada IoV belum sepenuhnya berjalan dengan baik mengingat teknologi ini juga tergolong baru. Oleh karena itu, dengan adanya potensi ancaman sekaligus dampak yang dihasilkan menjadikan penelitian tentang hal ini menjadi urgent untuk dilakukan. Penelitian ini bertujuan untuk mengevaluasi performa algoritma machine learning k-Nearest Neighbor (kNN) dalam mendeteksi serangan siber pada IoV. Kelas yang diprediksi pada penelitian ini berjumlah enam, yaitu: Benign, DoS, Gas-Spoofing, Steering Wheel-Spoofing, Speed-Spoofing, dan RPMSpoofing. Dua jenis serangan pada IoV tersebut (DoS dan Spoofing) beresiko menghadirkan gangguan operasional pada kendaraan yang dapat membahayakan pengemudi dan pengguna jalan lainnya. Dataset yang digunakan adalah dataset publik bernama CIC IoV2024. Performa algoritma kNN tersebut juga dibandingkan dengan tiga algoritma lain sebagai state-of-the-arts, seperti Naïve Bayes, Deep Neural Network, dan Random Forest. Hasilnya, k-Nearest Neighbor (kNN) mendapatkan performa terbaik dengan skor 98.7% untuk metrik akurasi maupun F1- Score. kNN mengungguli Naïve Bayes yang berada di urutan ke-dua, dengan skor 98.1% untuk akurasi dan 98.0% untuk F1-Score. Selanjutnya, algoritma kNN dapat direkomendasikan sebagai classifier dalam pengembangan intrusion detection system pada IoV.
Model Hybrid Random Forest dan Information Gain untuk Meningkatkan Performa Algoritma Machine Learning pada Deteksi Malicious Software Rafrastara, Fauzi Adi; Ghozi, Wildanil; Sani, Ramadhan Rakhmat; Handoko, L. Budi
Jurnal Informatika dan Rekayasa Perangkat Lunak Vol 6, No 2 (2024): September
Publisher : Universitas Wahid Hasyim

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36499/jinrpl.v6i2.11216

Abstract

Evolusi malware atau perangkat lunak berbahaya semakin meningkatkan kekhawatiran, menyerang tidak hanya komputer tetapi juga perangkat lain seperti smartphone. Malware kini tidak hanya berbentuk monomorfik, tetapi telah berkembang menjadi bentuk polimorfik, metamorfik, hingga oligomorfik. Dengan perkembangan massif ini, perangkat lunak antivirus konvensional tidak akan mampu mengatasinya dengan baik. Hal ini disebabkan oleh kemampuan malware untuk menyebarkan dirinya dengan pola sidik jari dan perilaku yang berbeda. Oleh karena itu, diperlukan antivirus cerdas berbasis machine learning yang mampu mendeteksi malware berdasarkan perilaku bukan sidik jari. Penelitian ini berfokus pada implementasi model machine learning dalam deteksi malware dengan menggunakan algoritma ensemble dan seleksi fitur untuk mencapai kinerja yang baik. Algoritma ensemble yang digunakan adalah Random Forest, dievaluasi dan dibandingkan dengan k-Nearest Neighbor dan Decision Tree sebagai state-of-the-art. Untuk meningkatkan kinerja klasifikasi dalam hal kecepatan proses, metode seleksi fitur yang diterapkan adalah Information Gain dengan 22 fitur. Hasil tertinggi dicapai dengan menggunakan algoritma Random Forest dan metode seleksi fitur Information Gain, mencapai skor 99.0% untuk akurasi dan F1-Score. Dengan mengurangi jumlah fitur, kecepatan pemrosesan dapat ditingkatkan hingga hampir 5 kali lipat.
Pengukuran Kesiapan Implementasi Knowledge Management System Sebagai Media Berbagi Pengetahuan pada Program Studi Rakhmat Sani, Ramadhan; S. Sukamto, Titien; Rohmani, Asih
Prosiding TAU SNARS-TEK Seminar Nasional Rekayasa dan Teknologi Vol. 5 No. 1 (2025): Prosiding TAU SNARS-TEK Seminar Nasional Rekayasa dan Teknologi 2024
Publisher : Fakultas Teknik dan Teknologi - TANRI ABENG UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47970/snarstek.v2i1.767

Abstract

Dalam membantu menerapkan visi dan misi Program Studi, knowledge manajemen (KM) sangat diperlukan untuk diadopsi. KM dapat berdampak kepada peningkatan inovasi dan pengetahuan di kalangan civitas akademik. Knowledge managemen system (KMS) juga diterapkan untuk mengelola pengetahuan dengan mendukung dan meningkatkan proses penciptaan pengetahuan, penyimpanan / pengambilan, transfer dan aplikasi dalam organisasi. Penelitian ini bertujuan untuk mengukur kesiapan yang disesuaikan dengan KMS Enabler yang ada pada organisasi seperti dimensi proses organisasi, orang, dan teknologi informasi. Kesiapan dihitung dengan menggunakan kuisioner yang disebarkan kepada stakeholder Program Studi Sistem Informasi Universitas Dian Nuswantoro. skala kesiapan mengadopsi skala aydin & Tasci yang dicerminkan pada skor sangat tidak setuju hingga sangat setuju. Hasil pengukuran dari sisi struktur organisasi, struktur pengambilan keputusan, evaluasi proses menajemen pengetahuan berada dalam kondisi rata-rata 3,68. Dari sisi People (SDM). Hasil perhitungan rata-rata yaitu diangka 3,9. Dan pada hasil pengukuran dari domain Teknologi menunjukkan angka rata-rata 2,4. Hal ini akan menjadi dasar yang baik bagi pengembangan dan implementasi KMS pada Program Studi.
Integrating Ensemble Learning and Information Gain for Malware Detection based on Static and Dynamic Features Sani, Ramadhan Rakhmat; Rafrastara, Fauzi Adi; Ghozi, Wildanil
Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control Vol. 10, No. 1, February 2025
Publisher : Universitas Muhammadiyah Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22219/kinetik.v10i1.2051

Abstract

The rapid advancement of malware poses a significant threat to devices, like personal computers and mobile phones. One of the most serious threats commonly faced is malicious software, including viruses, worms, trojan horses, and ransomware. Conventional antivirus software is becoming ineffective against the ever-evolving nature of malware, which can now take on various forms like polymorphic, metamorphic, and oligomorphic variants. These advanced malware types can not only replicate and distribute themselves, but also create unique fingerprints for each offspring. To address this challenge, a new generation of antivirus software based on machine learning is needed. This intelligent approach can detect malware based on its behavior, rather than relying on outdated fingerprint-based methods. This study explored the integration of machine learning models for malware detection using various ensemble algorithms and feature selection techniques. The study compared three ensemble algorithms: Gradient Boosting, Random Forest, and AdaBoost. It used Information Gain for feature selection, analyzing 21 features. Additionally, the study employed a public dataset called ‘Malware Static and Dynamic Features VxHeaven and VirusTotal Data Set’, which encompasses both static and dynamic malware features. The results demonstrate that the Gradient Boosting algorithm combined with Information Gain feature selection achieved the highest performance, reaching an accuracy and F1-Score of 99.2%.
IMPLEMENTASI METODE DESIGN THINKING DAN SYSTEM USABILITY SCALE PADA USER EXPERIENCE APLIKASI BELAJAR BAHASA INGGRIS TALKTALES MELALUI CERITA RAKYAT Rifa’i, Muhammad Nabhan; Sani, Ramadhan Rakhmat; Suharnawi, Suharnawi; Caturkusuma, Resha Meiranadi
Jurnal Sistem Informasi dan Informatika (Simika) Vol 8 No 1 (2025): Jurnal Sistem Informasi dan Informatika (Simika)
Publisher : Program Studi Sistem Informasi, Universitas Banten Jaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47080/simika.v8i1.3742

Abstract

Indonesia faces significant challenges in improving English proficiency among its population. According to the EF Education First English Proficiency Index 2023, Indonesia ranks 79th out of 113 countries. On the other hand, the current generation begins to forget cultural elements such as folklore or myths that have been passed down from the nation's ancestors. This study aims to design an English learning application for children and teenagers using the design thinking method. The stages of design thinking that are used are empathize, define, ideate, prototyping, and testing. In the prototyping stage, low-fidelity and high-fidelity prototypes were created to visualize the application's design and functionality. Testing was conducted by using task scenarios and the System Usability Scale (SUS). The task scenario testing results revealed that the effectiveness and efficiency rate of 85.71%, indicated that most tasks could be completed successfully by users. The SUS testing results showed an average score of 86.5%, indicated that the application has a high level of usability and well-received by users. Thus, the application's interface is considered easy to use and effective in supporting the English learning process for the target users. This research provides a positive contribution to the development of educational applications using a design thinking approach.
Model Hybrid Random Forest dan Information Gain untuk meningkatkan Performa Algoritma Machine Learning pada Deteksi Malicious Software Rafrastara, Fauzi Adi; Ghozi, Wildanil; Sani, Ramadhan Rakhmat; Handoko, L. Budi
Jurnal Informatika dan Rekayasa Perangkat Lunak Vol. 6 No. 2 (2024): September
Publisher : Universitas Wahid Hasyim

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

The evolution of malware, or malicious software, has raised increasing concerns, targeting not only computers but also other devices like smartphones. Malware is no longer just monomorphic but has evolved into polymorphic, metamorphic, and oligomorphic forms. With this massive development, conventional antivirus software is becoming less effective at countering it. This is due to malware's ability to propagate itself using different fingerprint and behavioral patterns. Therefore, an intelligent machine learning-based antivirus is needed, capable of detecting malware based on behavior rather than fingerprints. This research focuses on the implementation of a machine learning model for malware detection using ensemble algorithms and feature selection to achieve optimal performance. The ensemble algorithm used is Random Forest, evaluated and compared with k-Nearest Neighbor and Decision Tree as state-of-the-art methods. To enhance classification performance in terms of processing speed, the feature selection method applied is Information Gain, with 22 features. The highest results were achieved using the Random Forest algorithm and Information Gain feature selection method, reaching a score of 99.0% for accuracy and F1-Score. By reducing the number of features, processing speed can be increased by almost fivefold.
Deteksi Serangan Denial of Service (DoS) dan Spoofing pada Internet of Vehicles menggunakan Algoritma K-Nearest Neighbor (KNN) Ghozi, Wildanil; Rafrastara, Fauzi Adi; Sani, Ramadhan Rakhmat; Abdussalam, Abdussalam
Jurnal Informatika dan Rekayasa Perangkat Lunak Vol. 6 No. 2 (2024): September
Publisher : Universitas Wahid Hasyim

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

The implementation of Internet of Things (IoT) technology in motor vehicles has been increasing over time and is known as the Internet of Vehicles (IoV). IoV is becoming more essential to society as it provides comfort, safety, and efficiency in driving. Unfortunately, the use of internet technology in IoV brings the potential for cyber-attacks, such as Denial of Service (DoS) and Spoofing. Intrusion Detection Systems in IoV have not yet fully matured, as this technology is still relatively new. Therefore, the potential threats and their significant impact make research on this topic urgently needed. This study aims to evaluate the performance of the k-Nearest Neighbor (kNN) classification algorithm in detecting cyber-attacks on IoV. The predicted classes in this study consist of six categories: Benign, DoS, Gas-Spoofing, Steering Wheel-Spoofing, Speed-Spoofing, and RPM-Spoofing. These two types of attacks on IoV (DoS and Spoofing) pose risks to the operational safety of vehicles, which can endanger drivers and other road users. The dataset used is a public dataset called CIC IoV2024. The performance of the kNN algorithm is also compared to three other state-of-the-art algorithms, including Naïve Bayes, Deep Neural Network, and Random Forest. The results show that k-Nearest Neighbor (kNN) achieved the best performance with a score of 98.7% for both accuracy and F1-Score metrics. kNN outperformed Naïve Bayes, which ranked second with a score of 98.1% accuracy and 98.0% F1-Score. Thus, the kNN algorithm can be recommended as a classifier in the development of an intrusion detection system for IoV
Improved imperceptible engagement-based 2D sigmoid logistic maps, Hill cipher, and Kronecker XOR product Lestiawan, Heru; Sani, Ramadhan Rakhmat; Abdussalam, Abdussalam; Rachmawanto, Eko Hari; Purwanto, Purwanto; Sari, Christy Atika; Doheir, Mohamed
Bulletin of Electrical Engineering and Informatics Vol 14, No 3: June 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v14i3.8331

Abstract

Image encryption is a crucial facet of secure data transmission and storage, and this study explores the efficacy of combining sigmoid logistic maps (SLM), Hill cipher, and Kronecker's product method in enhancing image encryption processes. The evaluation, conducted on diverse images such as Lena, Rice, Peppers, Cameraman, and Baboon, unveils noteworthy findings. The Lena image emerges as the most successfully encrypted, as evidenced by the lowest mean squared error (MSE) at 92.81 and the highest peak signal-to-noise ratio (PSNR) at 19.43, reflecting superior fidelity and quality preservation. Additionally, the encryption of 64×64 pixels images consistently demonstrate robustness, with a high number of pixels change rate (NPCR) and unified average change intensity (UACI) values, particularly notable for the Cameraman image. Even for 128×128 pixels images, commendable encryption performance persists across the tested images. The amalgamation of SLM, Hill cipher, and Kronecker's product emerges as an effective strategy for balancing security and perceptual quality in image encryption, with the Lena image consistently outperforming others based on comprehensive metrics. This research provides valuable insights for future studies in the dynamic domain of image encryption, emphasizing the potential of advanced cryptographic techniques in ensuring secure multimedia communication.
Fairer Public Complaint Classification on LaporGub: Integrating XLM-RoBERTa with Focal Loss for Imbalance Data Zahro, Azzula Cerliana; Alzami, Farrikh; Sani, Ramadhan Rakhmat; Fahmi, Amiq; Megantara, Rama Aria; Naufal, Muhammad; Azies, Harun Al; Iswahyudi, Iswahyudi
Sinkron : jurnal dan penelitian teknik informatika Vol. 9 No. 4 (2025): Articles Research October 2025
Publisher : Politeknik Ganesha Medan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33395/sinkron.v9i4.15260

Abstract

The advancement of digital technology has provided opportunities for governments to improve the quality of public services through citizen complaint channels. One example of this implementation in Indonesia is Lapor Gub, managed by the Dinas Komunikasi dan Informasi Provinsi Jawa Tengah (Communication and Information Agency of Central Java Province). This platform receives thousands of complaints daily, ranging from infrastructure, social issues, to illegal levies. However, the large volume of data and the imbalanced distribution of categories pose significant challenges for both manual and automated processing. This study aims to classify citizen complaint texts using XLM-RoBERTa combined with Focal Loss as an approach to handle data imbalance. The dataset consists of 53,774 complaints after data cleaning and text preprocessing. The training process applied a stratified split (78% training, 18% validation, 10% testing) and fine-tuning for 10 epochs. Model performance was evaluated using accuracy, precision, recall, and macro F1-score. The results show that the model without Focal Loss achieved 78.1% accuracy with a macro F1-score of 0.606, while the model with Focal Loss improved the macro F1-score to 0.625 with 78.5% accuracy. These findings demonstrate that the application of Focal Loss enhances the model’s ability to recognize minority categories without reducing performance on majority classes. Therefore, the combination of RoBERTa and Focal Loss offers an effective solution to support faster, fairer, and more transparent public complaint management.
Enhancing Entity Extraction in E-Government Complaint Data using LDA-Assisted NER Umam, Ahmad Khotibul; Alzami, Farrikh; Sani, Ramadhan Rakhmat; Rohmani, Asih; Prabowo, Dwi Puji; Pergiwati, Dewi; Megantara, Rama Aria; Iswahyudi, Iswahyudi
Sinkron : jurnal dan penelitian teknik informatika Vol. 9 No. 4 (2025): Articles Research October 2025
Publisher : Politeknik Ganesha Medan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33395/sinkron.v9i4.15292

Abstract

With the rapid development of information technology, governments are increasingly challenged to provide digital channels that enhance public participation in governance. LaporGub, an official platform managed by the Central Java Provincial Government, accommodates citizens' aspirations and complaints, but faces challenges in processing large amounts of unstructured text. Manual analysis is time-consuming and error-prone, resulting in delayed responses and decreased service quality. Conventional Named Entity Recognition (NER) models struggle to handle informal Indonesian-language text, while transformer-based approaches require substantial computing resources that are not widely available in local government environments. Therefore, this study aims to develop a lightweight NER approach by integrating Latent Dirichlet Allocation (LDA) as a semantic pre-annotation tool to improve the accuracy of entity extraction in Indonesian e-government complaint data. To achieve this goal, a dataset of 53,858 complaint reports from the LaporGub platform (2022–2025) was processed using LDA topic modeling (k=10) to provide semantic context during annotation. Next, the enriched dataset was used to train a spaCy-based NER model targeting three entity types: LOCATION, ORGANIZATION, and PERSON, with a training-validation-test split ratio of 70:15:15 using stratified sampling. The evaluation showed that the proposed NER+LDA model achieved a precision of 90.03%, a recall of 81.86%, and an F1-score of 85.75%, representing improvements of +5.78, +2.55, and +4.04, respectively, compared to the baseline NER model (F1-score: 81.71%). Furthermore, the most significant improvements occurred in the detection of ORGANIZATION and PERSON entities. These findings confirm that the integration of LDA as a pre-annotation strategy effectively improves NER performance on informal complaint texts in Indonesia, thus offering a practical and resource-efficient alternative to transformer-based methods for e-government applications.
Co-Authors ., Junta Zeniarza ., Junta Zeniarza Abdussalam Abdussalam, Abdussalam Abu Salam Agung Priyo Utomo, Rino Ahmad Khotibul Umam, Ahmad Khotibul Aisyah, Ade Nurul Al zami, Farrikh Alzami, Farrikh Ardytha Luthfiarta Arta Moro Sundjaja, Arta Moro Asih Rohmani Asih Rohmani Asih Rohmani, Asih Atha Rohmatullah, Fawwaz Bernadette Chayeenee Norman , Maria Budi Harjo Budi, Setyo Candra Irawan Catur Supriyanto Caturkusuma, Resha Meiranadi Christy Atika Sari Defri Kurniawan Defri Kurniawan Diana Aqmala Doheir, Mohamed Dwi Puji Prabowo, Dwi Puji Eko Hari Rachmawanto Elkaf Rahmawan Pramudya Erika Devi Udayanti Fahmi Amiq Farah Syadza Mufidah Farrikh Al Zami Farrikh Al Zami Fauzi Adi Rafrastara Florentina Esti Nilasari Florentina Esti Nilawati Guruh Fajar Shidik Hanny Haryanto Harun Al Azies Heru Lestiawan Hussein, Jasim Nadheer Hussein, Jassim Nadheer Ifan Rizqa Ignasius, Darnell Ika Novita Dewi Ikhwansyah Kurniawan Indra Gamayanto ISWAHYUDI ISWAHYUDI Ivan Bayu Fachreza Junta Zeniarja Karima, Nida Aulia Karin, Tan Regina Kiki Widia Kurniawan, Defri L. Budi Handoko Maszuda, Akbar Alvian Megantara, Rama Aria Melati Anggreni Sitorus Muhammad Naufal, Muhammad Nadya Azizah Novita Dewi , Ika Nugraha, Purwa Esti Pangesti, Galih Mentari Paramita, Cinantya Pergiwati, Dewi Pratiwi, Yunita Ayu Priyo Utomo, Rino Agung Pulung Nurtantio Andono Purwanto Purwanto Ramadhani, Dwi Arya Ricardus Anggi Pramunendar Richard Emmerig Rifa’i, Muhammad Nabhan S. Sukamto, Titien Sarker, Md. Kamruzzaman Sasono Wibowo Sendi Novianto Sendi Novianto Sendi Novianto Setyo Budi Setyo Budi Silla, Hercio Venceslau Sirait, Tamsir Hasudungan Sri Winarno Sri Winarno Suharnawi Suharnawi Suharnawi Suharnawi Suharnawi Sukamto, Titien S. Sukamto, Titien Suhartini Sulistyono, Teguh Syahrizal, Muhammad Iqbal Titien Suhartini Sukamto Titien Suhartini Sukamto Utomo, Danang Wahyu Wibowo, Isro' Rizky Wildanil Ghozi Wulan Puspita Loka Yani Parti Astuti Yanuaresta, Dianna Yupie Kusumawati Zahro, Azzula Cerliana Zami, Farrikh Al