Claim Missing Document
Check
Articles

Found 3 Documents
Search
Journal : Indonesian Journal of Electrical Engineering and Computer Science

Color moment and gray level co-occurrence matrix in classification of soil organic matter for patchouli plantation Candra Dewi; Akbar Grahadhuita; Lailil Muflikhah
Indonesian Journal of Electrical Engineering and Computer Science Vol 19, No 2: August 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v19.i2.pp983-991

Abstract

Patchouli is one of the essential plants that have the most potential and widely cultivated in Indonesia. Patchouli is greedily absorbing soil nutrients and organic matter. Therefore, the selection of soil with high organic matter will maximize the patchouli’s productivity. This paper aims to facilitate soil’s organic matter identification by classifying soil image based on the combination of color and texture features. The color feature extraction was done using the Color Moments method and the texture feature was done using gray level co-occurrence matrix (GLCM) method. The selection of features was performed to obtain the best combination of color and texture features. The selected features then was used as input of classification by using modified K-nearest neighbor (MKNN). The samples of soil that used as data were taken from several districts in Blitar, East Java province. The testing result of this research showed the highest accuracy of 93,33% by using 180 training data, and also particular color and texture feature combination.
Prediction of hypertention drug therapy response using K-NN imputation and SVM algorithm Lailil Muflikhah; Nurul Hidayat; Dimas Joko Hariyanto
Indonesian Journal of Electrical Engineering and Computer Science Vol 15, No 1: July 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v15.i1.pp460-467

Abstract

Hypertention is a degenerative disease but its healing takes a long time by consuming hypertension drugs until patient’s lifetime. The research is conducted to predict response of drug therapy using bioinformatics approach which is a blend of biological and informatics engineering methods. It is used medical record data of hypertensive patient in drug therapy which has an impact on genetic characteristics. The data is constructed as modelling for learning process. Then, it is implemented as a prediction whether the blood presure is under control or not. However, the amount data have no values, then they are required to be applied preprocessing data. Therefore, this research is proposed K-Nearest Neighbor (K-NN) Imputation algorithm for refining data. After that, it is implemented using Support Vector Machine (SVM) algorithm for prediction.The experiment result is achieved the highest accuracy rate of 90% at the best parameter value λ = 0.9, Σ = 2, C = 0.1, ε = 0.001 in ten times iterations.
Single nucleotide polymorphism based on hypertension potential risk prediction using LSTM with Adam optimizer Lailil Muflikhah; Imam Cholissodin; Nashi Widodo; Feri Eko Herman; Teresa Liliana Wargasetia; Hana Ratnawati; Riyanarto Sarno
Indonesian Journal of Electrical Engineering and Computer Science Vol 33, No 2: February 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v33.i2.pp1126-1139

Abstract

Recent healthcare research has focused a great deal of interest on using genetic data analysis to predict the risk of hypertension. This paper presents a unique method for accurately predicting the vulnerability to hypertension by utilizing single nucleotide polymorphism (SNP) data. We present a novel neural network design utilizing the adaptive moment (Adam) optimizer to describe the intricate temporal correlations in SNPs. The study used a dataset with carefully preprocessed SNP data from a broad cohort for model input. The long short-term memory (LSTM) network was methodically built and trained with hyper-parameter and fine-tuning using the Adam optimizer to converge on ideal weights. Our findings indicate encouraging predictive performance, highlighting the suggested methodology’s usefulness in determining hypertension risk factors. The result showed that the proposed method achieved stability in the performance of 89% accuracy, 96% precision, 88% recall, and 92% F1-score. Due to its higher accuracy and greater predictive power, our SNP-based LSTM methodology is superior to the conventional machine learning method. By providing a novel framework that uses genetic data to predict the risk of hypertension, this research makes substantial contribution to the field of predictive healthcare. This framework helps with early intervention and customized preventative efforts.
Co-Authors A. Bachtiar , Fitra Abdurrachman Bachtiar, Fitra Achmad Jafar Al Kadafi, Achmad Jafar Addin Sahirah, Rafifa Adinugroho, Sigit Adnawirya Pratama, Cendikia Agung Setiyoaji Agus Ardiansyah Agus Wahyu Widodo Agus Wahyu Widodo, Agus Wahyu Ahmad Nur Royyan Ahmad Wildan Attabi' Ahmad Zaki Akbar Grahadhuita Al Kautsar, Prima Daffa Aldi Bagus Sasmita Aldino Caturrahmanto Anis Zubair, Anis Annisaa Amalia Safitri Aqmal Maulana Tisno Nuryawan Ardiza Dwi Septian Arief Andy Soebroto Ashidiq, Muhammad Fihan Aulia Herdhyanti Bachtiar, Harsya Baharudin B. Baharum Baihaqi, Galih Restu Bajsair, Fath' Hani Sarli Bayu Laksana Yudha Bayu Rahayudi Bening Herwijayanti Bintang, Tulistyana Irfany Brillian Ghulam Ash Shidiq Budi Darma Setiawan Candra Dewi Candra Dewi Daneswara Jauhari Daneswara Jauhari, Daneswara Darma Setiawan, Budi Darmawan, Riski Daud, Nathan Dewi, Buana Dhimas Wida Syahputra Dian Eka Ratnawati Dimas Joko Hariyanto Dimas Joko Haryanto Duwi Purnama Sidik Edy Santoso Edy Santoso Eni Hartika Harahap Eva Agustina Ompusunggu Faris Dinar Wahyu Gunawan Fatimah Az-Zahra, Adinda Feri Eko Herman Firdaus, Nada Fitra Abdurrachman Bachtiar Fitrotuzzakiyah, Shafira Puspa Gessia Faradiksi Putri Gumelar, Dimas HANA RATNAWATI Hanggar Wahyu Agi Prayogo Haris, Asmuni Haryanto, Dimas Joko Hinandy Nur Anisa Hoar, Wilhelmina Sonya Ichsan Achmad Fauzi Iftinan, Salsa Nabila Imam Cholissodin Imam Cholissodin Imam Cholissodin Imam Cholissodin Indriati Indriati Indriati Indriati Issa Arwani Kautsar, Ahmad Izzan Khairunnisa, Alifah Ksatria Bhuana Kukuh Bhaskara Kukuh Haryobismoko Kurnianingtyas, Diva Laily Putri Rizby Luqyana, Wanda Athira Luthfi Afrizal Ardhani M. Ali Fauzi M. Tanzil Furqon, M. Tanzil Marine Putri Dewi Yuliana Marji . Marji Marji Maulana, Muhammad Taufik Maulidiya, Afifulail Maya Nur Muh Arif Rahman Muh Hamim Fajar Muh. Arif Rahman Muhammad Abduh Muhammad Fajri Muhammad Ferian Rizky Akbari Muhammad Rafif Al Aziz MUHAMMAD SYAFIQ Muhammad Tanzil Furqon Muhammad Wafiq Mukhrodi, Dillah Lyra Nabil Auliya, Muhammad Hanif Nashi Widodo Nisa, Lisa N. Noor Fatyanosa, Tirana Novanto Yudistira Nurfansepta, Amira Ghina Nurhidayati Desiani Nurul Dyah Mentari Nurul Hidayat Nurul Hidayat Olivia Bonita Puji Indah Lestari Puspita Sari Putra Pandu Adikara Putri, Rania Aprilia Dwi Setya Rachmad Indrianto Rachmatika, Isnayni Sugma Rafifah Nawawi, Danisha Ramadhan, Galang Gilang Randi Pratama Nugraha Randy Cahya Wihandika Ratih Kartika Dewi Rekyan Regarsari Mardhi Putri Rekyan Regasari Mardi Putri, Rekyan Regasari Mardi Rendi Cahya Wihandika Rheza Raditya Andrianto Ria Ine Pristiyanti Rika Raudhotul Rizqiyah Riski Darmawan Riyanarto Sarno Rizal Setya Perdana Rizal Setya Perdana Robbiyatul Munawarah Rowan Rowan Rusydi Hanan, Muhammad Satrio Hadi Wijoyo Setiana, Maya Setya Perdana, Rizal Shalsadilla, Shafatyra Reditha Sholeh, Mahrus Sukma, Lintang Cahyaning Supraptoa Supraptoa Surya Dermawan Susanto, Dominicus Christian Bagus Sutrisna, Naufal Putra Sutrisno Sutrisno Sutrisno, Sutrisno Syafruddin Agustian Putra Syarif Hidayatulloh Tahtri Nadia Utami Tibyani Tibyani Tirana Noor Fatyanosa, Tirana Noor Tri Fadilah, Ghina Utaminingrum, Fitri Vianti Mala Anggraeni Kusuma Vidya Capristyan Pamungkas Wahyu Rizki Ferdiansyah Wardana, Dzaky Ahmadin Berkah Warut, Gregorius Batara De Wibowo, Dhimas Bagus Bimasena Wijaya, Nicholas Yobel Leonardo Tampubolon Yogi Suwandy Yulian Ekananta Yunita, W. Lisa Zakiyyah, Rizka Husnun Zanna Annisa Nur Azizah Fareza