Claim Missing Document
Check
Articles

Rancang Bangun Sistem Manajemen Data Akreditasi berbasis Web Asis, Muhammad Arfah; Purnawansyah, Purnawansyah; Salim, Yulita
Journal Cerita: Creative Education of Research in Information Technology and Artificial Informatics Vol 10 No 1 (2024): Journal CERITA : Creative Education of Research in Information Technology and Ar
Publisher : UNIVERSITAS RAHARJA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33050/cerita.v10i1.2989

Abstract

Akreditasi memerlukan pengelolaan dokumen yang efisien, namun di banyak universitas, pengelolaan dokumen akreditasi masih menghadapi kendala. Dokumen tersebar dalam berbagai format dan sulit diakses. Oleh karena itu, pengembangan sistem informasi manajemen data akreditasi menjadi penting. Tujuan penelitian ini untuk merancang dan membangun sistem manajemen data akreditasi berbasis web yang sesuai dengan kebutuhan Fakultas Ilmu Komputer di Universitas Muslim Indonesia (UMI). Penelitian ini menggunakan metode waterfall dalam pengembangan sistem dengan tahapan requirements, design, implementation, testing, dan maintenance. Sistem ini memungkinkan admin dan operator mengelola data akreditasi, dan asesor untuk mengakses dan mengevaluasi dokumen akreditasi. Hasil pengujian menunjukkan bahwa sistem dapat berjalan sesuai dengan yang diharapkan, dan semua fitur utama berfungsi dengan baik. Kesimpulannya, sistem ini membantu Fakultas Ilmu Komputer UMI dalam meningkatkan efisiensi dalam proses akreditasi, menghemat waktu dan sumber daya, serta mendukung pemeliharaan kualitas dan reputasi pendidikan tinggi di fakultas.
Ensemble semi-supervised learning in facial expression recognition Purnawansyah, Purnawansyah; Adnan, Adam; Darwis, Herdianti; Wibawa, Aji Prasetya; Widyaningtyas, Triyanna; Haviluddin, Haviluddin
International Journal of Advances in Intelligent Informatics Vol 11, No 1 (2025): February 2025
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/ijain.v11i1.1880

Abstract

Facial Expression Recognition (FER) plays a crucial role in human-computer interaction, yet improving its accuracy remains a significant challenge. This study aims to enhance the robustness and effectiveness of FER systems by integrating multiple machine learning techniques within a semi-supervised learning framework. The primary objective is to develop a more effective ensemble model that combines Long Short-Term Memory (LSTM), Convolutional Neural Networks (CNN), Support Vector Classifier (SVC), and Random Forest classifiers, utilizing both labeled and unlabeled data. The research implements data augmentation and feature extraction techniques, utilizing advanced architectures such as VGG19, ResNet50, and InceptionV3 to improve the quality and representation of facial expression data. Evaluations were conducted across three dataset scenarios: original, feature-extracted, and augmented, using various label-to-unlabeled ratios. The results indicate that the ensemble model achieved a notable accuracy improvement of 87% on the augmented dataset compared to individual classifiers and other ensemble methods, demonstrating superior performance in handling occlusions and diverse data conditions. However, several limitations exist. The study’s reliance on the JAFFE dataset may restrict its generalizability, as it may not cover the full range of facial expressions encountered in real-world scenarios. Additionally, the effect of label-to-unlabeled ratios on the model's performance requires further exploration. Computational efficiency and training time were also not evaluated, which are critical considerations for practical implementation. For future research, it is recommended to employ cross-validation methods for more robust performance evaluation, explore additional data augmentation techniques, optimize ensemble configurations, and address the computational efficiency of the model to better advance FER technologies.
Analisis Tata Letak Koleksi Buku Di Perpustakaan Utsman Bin Affan Menggunakan Metode Association Rule Anugrah, Rezky; Purnawansyah, Purnawansyah; Astuti, Wistiani
Buletin Sistem Informasi dan Teknologi Islam (BUSITI) Vol 5, No 4 (2024)
Publisher : Universitas Muslim Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33096/busiti.v5i4.2166

Abstract

Universitas Muslim Indonesia telah berhasil menempati posisi ke-92 pemeringkatan WRWU. Keberhasilan atas pencapaian UMI didukung dengan adanya berbagai sarana dan prasarana salah satunya fasilitas perpustakaan. Pada perpustakaan Utsman Bin Affan buku diletakkan berdasarkan kategori buku yang telah diberikan penomoran yang disebut Dewey Decimal Classification (DDC). Namun, dalam penempatan buku belum diatur dengan melihat tingkat keseringan pengunjung dalam meminjam buku tersebut. Selain itu, pengunjung kesulitan dalam mencari kembali keberadaan buku yang sering dipinjam. Metode association rule khususnya algoritma apriori dapat digunakan dalam penataan koleksi buku di perpustakaan Utsman Bin Affan untuk mengidentifikasi asosiasi antara berbagai judul buku dengan menemukan support dan confidence yang menghasilkan pola asosiasi. Dari data transaksi peminjaman buku sejak 21 Januari 2022 sampai 19 januari 2024 adalah sebanyak 50 ID Mahasiswa perpustakaan dengan total 128 transaksi menghasilkan pola transaksi peminjaman mahasiswa UMI yakni Karya Umum, Ilmu-Ilmu Sosial dengan nilai support 14% dengan confidence 43%. Buku Filsafat dan Psikologi, Agama dengan nilai support 22% dengan confidence 36%. Selanjutnya buku Filsafat dan Psikologi maka mahasiswa juga akan meminjam ilmu-Ilmu Sosial dengan nilai support 22% dengan confidence 45%. Berdasarkan hasil tersebut disarankan untuk melakukan evaluasi reguler terhadap tata letak perpustakaan berdasarkan data penyimpanan dan umpan balik pengguna, dan melakukan penyesuaian yang diperlukan untuk meningkatkan efektifitasnya.
Klasifikasi Daun Herbal Menggunakan K-Nearest Neighbor dan Convolutional Neural Network dengan Ekstraksi Fourier Descriptor Basri, Haerunnisa; Purnawansyah, Purnawansyah; Darwis, Herdianti; Umar, Fitriyani
Jurnal Teknologi dan Manajemen Informatika Vol. 9 No. 2 (2023): Desember 2023
Publisher : Universitas Merdeka Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26905/jtmi.v9i2.10350

Abstract

The number of herbal plants in Indonesia is 30,000, but only about 1,200 plants are used in medicine. The large number of herbal plants makes it difficult for people to distinguish one type of herbal plant from another. From these conditions, this research has conducted tests to compare the performance of the K-Nearest Neighbor (KNN) and Convolutional Neural Network (CNN) methods using Fourier Descriptor (FD) feature extraction on herbal plants, namely moringa (moringa oleifera) and katuk (sauropus androgynus). The amount of data used is 480 data using image conditions, namely dark and light images which are then divided into 20% testing data and 80% training data. Classification is done using the KNN method using 5 distance calculations (Euclidean, Chebyshev, Manhattan, Minkowski, and Hamming) and CNN with FD feature extraction. From the tests that have been carried out, it is found that the use of FD feature extraction for the KNN method produces the best performance on both light and dark image data. While the use of the CNN method, for dark image data, the best accuracy results are obtained with FD feature extraction and CNN. Meanwhile, for bright image data, the best performance accuracy results are obtained in the CNN method without going through feature extraction. Of these three methods, using FD and KNN feature extraction is more recommended because it produces 100% accuracy in moringa and katuk images with light and dark intensity.
A Comparative Study of Public Opinion on Indonesian Police: Examining Cases in the Aftermath of the Kanjuruhan Football Disaster Purnawansyah, Purnawansyah; Raja, Roesman Ridwan; Darwis, Herdianti
Indonesian Journal of Data and Science Vol. 6 No. 2 (2025): Indonesian Journal of Data and Science
Publisher : yocto brain

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.56705/ijodas.v6i2.235

Abstract

This research explores public sentiment towards the Indonesian police using sentiment analysis and machine learning techniques. The study addresses the challenge of understanding public opinion based on social media comments related to significant police cases. The aim is to compare reported satisfaction levels with actual public sentiment. Utilizing the Indonesian RoBERTa base IndoLEM sentiment classifier, comments were analyzed and preprocessed. The classification was conducted using Random Forest (RF) and Complement Naive Bayes (CNB) models, incorporating unigram and bi-gram features. Oversampling techniques were applied to handle data imbalance. The best-performing model, Random Forest with bi-gram features, achieved high evaluation scores, including a precision of 0.91 and accuracy of 0.91. The findings reveal significant insights into public opinion, contributing to improved law enforcement strategies and public trust.
An Inflation Rate Prediction Based on Backpropagation Neural Network Algorithm Purnawansyah, Purnawansyah; Haviluddin, Haviluddin; Setyadi, Hario Jati; Wong, Kelvin; Alfred, Rayner
International Journal of Artificial Intelligence Research Vol 3, No 2 (2019): December 2019
Publisher : Universitas Dharma Wacana

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1806.11 KB) | DOI: 10.29099/ijair.v3i2.112

Abstract

This article aims to predict the inflation rate in Samarinda, East Kalimantan by implementing an intelligent algorithm, Backpropagation Neural Network (BPNN). The inflation rate data was obtained from the Provincial Statistics Bureau of Samarinda https://samarindakota.bps.go.id/ for the period January 2012 to January 2017. The method used to measure accuracy algorithm prediction was the mean square error (MSE). Based on the experiment results, the BPNN method with architectural parameters of 5-5-5-1; the learning function was trainlm; the activation functions were logsig and purelin; the learning rate was 0.1 and able to produce a good level of prediction error with an MSE value of 0.00000424. The results showed that the BPNN algorithm can be used as an alternative method in predicting inflation rates in order to support sustainable economic growth, so that it can improve the welfare of the people in Samarinda, East Kalimantan.
Literasi dan Pendampingan Pengelolaan Website Fakultas Ekonomi dan Bisnis Untuk Peningkatan Peringkat UMI di Webometrics Berdasarkan Aspek Penilaian Visibility Irawati, Irawati; Purnawansyah, Purnawansyah; Indra, Dolly
Ilmu Komputer untuk Masyarakat Vol 5, No 1 (2024)
Publisher : Universitas Muslim Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33096/ilkomas.v5i1.2292

Abstract

Webometrics adalah metodologi yang digunakan untuk memberikan pemeringkatan pada perguruan tinggi di seluruh dunia. Sebagai salah satu perguruan tinggi swasta terbesar dan terbaik di Indonesia Timur, UMI berupaya untuk meningkatkan mutu pendidikannya setiap tahun. Setiap kegiatan yang dilakukan oleh UMI akan tercatat website pemeringkatan universitas dunia yang disebut Webometrics. Agar dapat menunjang indikator-indikator pencapaian webometrics UMI, maka civitas akademika UMI perlu memahami tentang pentingnya pengetahuan tentang indikator yang dinilai oleh Cybermetrics Lab sebagai metode pemeringkatan perguruan tinggi. Kegiatan yang dilakukan berupa Sosialisasi dan workshop  Webometrix tentang Visibility Impact (50%), jumlah eksternal link unik yang terhubung dengan domain web milik perguruan tinggi. 
DIGITAL IMAGE CLASSIFICATION OF HERBAL LEAVES USING KNN AND CNN WITH GLCM FEATURES Zahirah, Dinna; Purnawansyah, Purnawansyah; Kurniati, Nia; Darwis, Herdianti
Jurnal Teknik Informatika (Jutif) Vol. 5 No. 1 (2024): JUTIF Volume 5, Number 1, February 2024
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jutif.2024.5.1.1162

Abstract

Geographical position and having a tropical climate make Indonesia known for its abundant biodiversity, one of which is herbal leaves. Indonesia has more than 2039 species that fall into the category of herbal medicinal plants. Herbal leaves are plants that are used as an alternative to natural disease healing. The large number of herbal leaf plants makes it difficult for people to distinguish between herbal plants and non-herbal plants, except when herbal leaf plants bear fruit or bloom. With advances in technology, many studies have been conducted to identify types of herbal plants, one of which is to identify the characteristics of the leaves. In this study, image recognition of herbal leaves was carried out using the K-Nearest Neighbor and Convolutional Neural Network methods with feature extraction of the Gray Level Co-occurance Matrix. By using these 2 methods, the data collected in this study were 480 leaf images which were then divided into 80% testing data and 20% training data. The data used are in the form of Sauropus androgynus and Moringa leaves. Based on the test results, the Convolutional Neural Network method which is suggested in the herbal leaf image classification which has an accuracy value of 96%..
Peningkatan Literasi Digital di Kalangan Siswa Internasional Melalui Pelatihan Microsoft Office Syafie, Lukman; Purnawansyah, Purnawansyah; Herman, Herman; Awangga, Narendra; Wahyudi, Ifan
E-Dimas: Jurnal Pengabdian kepada Masyarakat Vol 16, No 2 (2025): E-DIMAS
Publisher : Universitas PGRI Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26877/e-dimas.v16i2.20721

Abstract

Program pengabdian ini bertujuan meningkatkan keterampilan digital siswa di Sekolah Kebangsaan Syeikh Mohd Idris Al-Marbawi, Malaysia. Masalah utama yang dihadapi sekolah ini adalah kurangnya akses siswa terhadap komputer dan aplikasi dasar seperti Microsoft Word. Melalui pelatihan intensif yang diberikan oleh Universitas Muslim Indonesia, siswa dibekali dengan keterampilan dasar penggunaan komputer dan aplikasi Microsoft Word. Pelatihan mencakup pengenalan perangkat keras dan perangkat lunak, serta praktik penggunaan fitur Microsoft Word, mulai dari dasar hingga fitur lanjutan seperti Word Art dan pengaturan kolom.Hasil dari pelatihan ini menunjukkan peningkatan signifikan pada keterampilan digital siswa sesudah pelatihan. Selain itu, sebagai luaran dari program ini, panduan pengantar komputer yang dapat digunakan oleh siswa secara berkelanjutan. Program ini berhasil meningkatkan literasi digital siswa dan diharapkan dapat menjadi model bagi sekolah-sekolah lain. Tantangan yang dihadapi adalah tingkat pemahaman siswa yang beragam, namun hal ini diatasi dengan sesi pendampingan dan konsultasi intensif.
Hybrid Fourier Descriptor Naïve Bayes dan CNN pada Klasifikasi Daun Herbal Backar, Sunarti Passura; Purnawansyah, Purnawansyah; Darwis, Herdianti; Astuti, Wistiani
Jurnal Informatika: Jurnal Pengembangan IT Vol 8, No 2 (2023)
Publisher : Politeknik Harapan Bersama

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30591/jpit.v8i2.5186

Abstract

Plants are vital to human life on earth, and the leaves and their whole parts have many benefits. These parts of the plant can help distinguish between different species. The leaf identification can be performed at any time, while the other parts of the plants can only be identified at a certain time. The study aims to classify two types of herbs i.e. saur-opus androgynous and moringa oleifera, implementing the Fourier Descriptor method to extract the shape and texture features. In the process of classification using the Naïve Bayes method with three types of nuclei (Gaussian, Bernoulli, and Multinomial) and a Convolutional Neural Network. The testing process was carried out using two scenarios, dark and light, where each scenario consisted of 240 images for a total of 480 images divided into 20% of the data testing and 80% of the training data. The Fourier Descriptor-Bernoulli Naive Bayes method gives the lowest accuracy in both light and dark scenarios, at 46% and 52%, respectively. As for the classification of herbal leaves using a combination of the Fourier Descriptor-Convolutional Neural Network method, it is recommended to be used in light image scenarios and Fourier Descriptor-Gaussian Naive Bayes in the dark scenarios because it is able to detect herbal leaf types with 100% accuracy.
Co-Authors - Nurhikma A. Nurjulianty Abd. Rasyid Syamsuri Achmad Fanany Onnilita Gaffar Achmad Fanany Onnilita Gaffar Adela Regita Azzahra Adnan, Adam Agung R Aji P. Wibawa Aji Prasetya Wibawa Alfitriana Riska Alfiyyah, Nurul Alisma, Alisma Andi Muhammad Adnan Rusdy Anggreani, Desi Anisatul Humairah Anugrah, Rezky Arman, Eka Arrosied, Harun Arvina Yudithia Sompie Astuti, Wistiani Atussaliha, Nur Almar' Awang Harsa Kridalaksana Awangga, Narendra Backar, Sunarti Passura Basri, Haerunnisa Benny Leonard Enrico P Benny Leonard Enrico Panggabean Benny Leonard Enrico Panggabean Bustam, Faida Daeng Cholisah Erman Hasihi Darwis, Herdianti Desi Anggreani Dewi Widyawati Dian Dolly Indra Fahmi Fahmi Faradibah, Amaliah Farniwati Fattah Fatimah Syarifuddin Fattah, Farniwati Felix Andika Dwiyanto Fery Setyo Aji Fitriyani Umar Harlinda L Harlinda Lahuddin Hasnidar S. Haviluddin Haviluddin Herdianti Darwis Herman Herman Huzain Azis Ifan Wahyudi Inggrianti Pratiwi Putri Irawati Irawati Irawati Irawati Iriani Indah Saputri Jumrayanti Arfah Kasmira Kasmira La Saiman Lilis Hayati lilis nurhayati Listyan Nur Saida Lokapitasari Belluano, Poetri Lestari Lukman Syafie M. Imam Maulana M. Takdir Mahfuddin Mukmin Malani, Rheo Manga, Abdul Rachman Mansyur, St. Hajrah Mardiyyah Hasnawi Ming Foey Teng Muh Alim Abdi Muhammad Arfah Asis Muhammad Hardiansyah Hairi Muhammad Ikhsan Supriyadi Muhammad Yushar Mattola Munaf, Adryan Dwiprawira Munawir Nasir Hamzah Nafalski, Andrew Nia Kurniati Nirmala Nirmala, Nirmala Nirwana Nirwana Nugroho, Basuki Rahmat Nur Afra Dimitri Pratiwi Nur Almar' Atussaliha Nur Rahmah NURZAENAB NURZAENAB Nurzaenab Nurzaenab Panggabean, Benny Leonard Enrico Purba, Muren Fiatra Denata Putri Regina Prayoga Putri, Inggrianti Pratiwi Rahmadani Rahmadani Raja, Roesman Ridwan Ramdan Sastra Ramdan Sastra Ramdaniah, Ramdaniah Rayner Alfred Rayner Alfred Resky Anugrah Rezky Anugrah Salim, Yulita Saly, Intan Novita Setyadi, Hario Jati St. Hajrah Mansyur Sugiarti, Sugiarti Sulfikar Sulfikar Sunarti Passura Backar Syafie, Lukman Syamsiar, Syamsiar Tasrif Hasanuddin Triyanna Widiyaningtyas Triyanna Widyaningtyas Triyanna Widyaningtyas, Triyanna Umar, Fitriyani Wahyuni Wahyuni Wd. Shaqina Rafa Naura Wistiani Astuti Wistiani Astuti Wong, Kelvin Yudha Islami Sulistya Yulita Salim Yusrandi Yusrandi Zahif Safyin Saleh Zahirah, Dinna Zulkarnain, Nur Ainun