Claim Missing Document
Check
Articles

Found 39 Documents
Search

Penerapan K-Fold Cross Validation untuk Menganalisis Kinerja Algoritma K-Nearest Neighbor pada Data Kasus Covid-19 di Indonesia Hafid, Hardianti
Journal of Mathematics, Computations and Statistics Vol. 6 No. 2 (2023): Volume 06 Nomor 02 (Oktober 2023)
Publisher : Jurusan Matematika FMIPA UNM

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

The Covid-19 pandemic has been a global challenge in recent years. This virus has impactedmost aspects of human life, including health, the economy, and society. Indonesia is one of the affectedcountries that has now entered an endemic phase. This research aims to apply the K-Fold Cross Validationmethod to analyze the performance of the K-Nearest Neighbor (K-NN) algorithm on Covid-19 cases datain Indonesia, in order to measure how accurately the K-NN model can predict Covid-19 cases. The resultsobtained using 30-Fold cross-validation with a value of k=5 show an accuracy rate of 68.65% and a kappavalue of 0.5123. These results indicate that the K-NN model is capable of providing adequate predictionswith a higher level of agreement. This research provides a deeper understanding of the performance of theK-NN algorithm in the context of Covid-19 cases data in Indonesia, which can be used as a foundation forfurther improvements in modeling and understanding Covid-19 case data.
Pendampingan Pencatatan Daftar Pemilih Tetap Untuk Pemilihan Kepala Daerah di Kelurahan Mawang Kabupaten Gowa Isma Muthahharah; Hardianti Hafid; Bungatang; Yati Samsyuddin
Jurnal Hasil-Hasil Pengabdian dan Pemberdayaan Masyarakat Vol. 3 No. 2 (2024): Volume 03 Nomor 02 (Oktober 2024)
Publisher : Jurusan Matematika FMIPA UNM

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35580/jhp2m.v3i2.4227

Abstract

Kelurahan Mawang adalah sebuah kelurahan di Kecamatan Somba Opu, Kabupaten Gowa, Provinsi Sulawesi Selatan. Dalam rangka pemutakhiran data pemilu kelurahan mawanng menugaskan beberapa pantarlih untuk melakukan pencatatan daftar pemilih tetap dan mencocokan data dengan Kartu Tanda Penduduk dan Kartu Keluarga apakah sudah sesuai dengan yang ada di aplikasi. Dalam pelaksanaan pencatatan dan pemutakhiran daftar pemilih tetap untuk Pimilihan Kepala Daerah (Pilkada) di kelurahan mawang berjumlah 570 orang dengan berarapa keterangan yaitu keterangan status perkawinan (Kawin, Belum kawin, pernah kawin, keterangan status kepimilikan KTP-el (Sudah memeiliki KTP el dan Belum memiliki KTP-el), dan keterangan lain (meninggal, ganda, pindah domisili, di bawah umur, WNA, TNI, Polri, dan TPS tidak sesuai). Selain itu, ada beberapa kendala dalam pencatatan daftar pemilih tetap yaitu kendala yaitu ada warga yang tidak mau membuka pintu rumahnya, ada yang rumahnya sudah tidak dihuni, dan ada warga yang sudah tercatat dalam daftar pemilih tetapi sudah meninggal.
PKM Pelatihan Analisis Regresi Bagi Dosen Universitas Teknologi AKBA Makassar Muhammad Nusrang; Hardianti Hafid; Muhammad Fahmuddin S
Jurnal Hasil-Hasil Pengabdian dan Pemberdayaan Masyarakat Vol. 3 No. 2 (2024): Volume 03 Nomor 02 (Oktober 2024)
Publisher : Jurusan Matematika FMIPA UNM

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35580/jhp2m.v3i2.4632

Abstract

Pengolahan data statistik merupakan keterampilan yang penting dalam penelitian kuantitatif, terutama dalam menarik kesimpulan dari hipotesis yang diajukan. Untuk mendukung pengembangan kompetensi dosen dalam penelitian, Program Pengabdian Kepada Masyarakat (PKM) ini bertujuan memberikan pelatihan analisis regresi kepada dosen Universitas Teknologi AKBA Makassar. Pelatihan ini mencakup penjelasan teknik dasar pengolahan data, pengenalan analisis regresi, praktik pelatihan analisis, dan penugasan studi kasus. Berdasarkan evaluasi, peserta merasa bahwa pelatihan ini membantu meningkatkan pemahaman dalam menerapkan analisis regresi dalam penelitian, serta memberikan dampak positif terhadap pengembangan kegiatan akademik dosen. Melalui hasil yang positif, diharapkan kegiatan serupa dapat diadakan kembali untuk mendukung peningkatan keterampilan dosen dalam bidang penelitian.
Penerapan Analisis Data Panel Pada Suhu Udara Terhadap Perubahan Iklim Curah Hujan di Kota Padang Muthahharah, Isma; Hafid, Hardianti
Journal of Mathematics: Theory and Applications Vol 6 No 2 (2024)
Publisher : Program Studi Matematika Universitas Sulawesi Barat

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31605/jomta.v6i2.4064

Abstract

Climate is the average weather conditions that prevail over an extended period in a particular region. The complex climate system, comprising components such as the atmosphere, lithosphere, and biosphere, generates climate variations among different areas. Climate change has potential impacts such as changes in rainfall patterns, rising temperatures, and sea level rise. Extreme weather, prolonged droughts, and heatwaves can endanger both the environment and human beings.This article aims to assist in predicting future climate patterns to prepare for their impacts using panel data analysis. A panel data regression model is employed to assess the influence of rainfall and air temperature on climate change in Kota Padang from 2018 to 2022. The analysis reveals a significant influence of air temperature, estimated at 0.08, on climate change in Kota Padang during this period. These findings provide a basis for developing mitigation and adaptation strategies to address climate challenges in the region and offer valuable insights for government policies in facing future climate-related issues.
The Community Empowerment in Managing Inorganic Recycled Waste in Tallo Subdistrict, Makassar city Meliyana R, Sitti Masyitah; Hafid, Hardianti; Ahmar, Ansari Saleh; Talib, Ahmad; Rahman, Abdul
Panrannuangku Jurnal Pengabdian Masyarakat Vol. 3 No. 3 (2023)
Publisher : Lembaga Penelitian dan Pengembangan Teknologi dan Rekayasa, Yayasan Ahmar Cendekia Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35877/panrannuangku2108

Abstract

Community service activities are a continuous effort to enhance the awareness and abilities of the residents in the Pannampu Village, Tallo Subdistrict, Makassar City, in the management of inorganic recycling waste. The purpose of these activities is to identify the potential of inorganic waste within the local community, provide education on sustainable waste management practices, and teach recycling skills to encourage active community participation in waste separation, support better waste management initiatives, and create creative recycling products, namely economically valuable handicrafts. The results of these activities depict an increase in community awareness regarding the importance of sustainable waste management practices, with a positive impact on the local environment. This community service initiative provides concrete evidence that collaboration between academics and the local community can create significant changes in the management of inorganic recycling waste and promote active community participation in maintaining a cleaner environment.
Pelatihan Pembuatan Komposter Alat Pengolah Limbah Organik di Kampung Bersih Nusantara Kota Makassar Meliyana, Sitti Masyitah; Rustam, Sitti Nail; Rahman, Abdul; Muthahharah, Isma; Hafid, Hardianti
Panrannuangku Jurnal Pengabdian Masyarakat Vol. 4 No. 2 (2024)
Publisher : Lembaga Penelitian dan Pengembangan Teknologi dan Rekayasa, Yayasan Ahmar Cendekia Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35877/panrannuangku2616

Abstract

Sampah yang tidak dikelolah dengan baik dapat mencemari lingkungan, mengganggu ekosistem, dan mengancam kesehatan manusia. Di Kampung Bersih Nusantara telah tersedia Bank Sampah sehingga masyarakat dapat menyetorkan sampah anorganic mereka ke Bank Sampah tersebut. Namun belum ada solusi untuk sampah organik seperti sisa-sisa tanaman, sampah rumah tangga dan lain-lain. Sehingga tujuan kegiatan ini adalah memberikan pelatihan pembuatan komposter pengolah sampah limbah organik dan memudahkan daur ulang limbah organik. Dengan adanya pelatihan pembuatan komposter sederhana masyarakat dapat membuat sendiri alat komposter dan masyarakat mampu mengolah sampah rumah tangga secara mandiri.
Pelatihan Analisis Uji Regresi Bagi Dosen Universitas Patompo Nusrang, Muhammad; Hafid, Hardianti; Fahmuddin S., Muhammad
Panrannuangku Jurnal Pengabdian Masyarakat Vol. 5 No. 1 (2025)
Publisher : Lembaga Penelitian dan Pengembangan Teknologi dan Rekayasa, Yayasan Ahmar Cendekia Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35877/panrannuangku3240

Abstract

Abstract Kegiatan penelitian kuantitatif tidak terlepas dari keterampilan pengolahan data statistika untuk dapat menarik kesimpulan dari hipotesis yang telah dibuat. Sesuai dengan berbagai keputusan yang berkaitan dengan pengembangan keterampilan, maka sebagai wujud pengabdian pada masyarakat dalam upaya membantu pengembangan pengetahuan dan pemahaman tentang analisis uji regresi, maka kegiatan pelatihan dilakukan sebagai bagian dari kepedulian dalam mengembangkan misi pengembangan kemampuan professional dosen dalam melakukan kegiatan penelitian. Pelaksanaan pelatihan dilakukan dengan pemberian gambaran umum Teknik pengolahan data, kemudian dilanjutkan dengan pengantar analisis uji regresi, pelatihan analisis uji regresi, dan diakhiri dengan penugasan yang berisi contoh kasus dalam analisis uji regresi. Umumnya para peserta menyatakan kegiatan ini dapat meningkatkan kegiatan akademik. Sehingga kegiatan serupa diharapkan dapat dilakukan kembali.
Implementation of DBSCAN for Earthquake Clustering in Indonesia with Potential Surface Damage Hardianti Hafid; Rahmat Hidayat; Rahmat H. S.
Journal of Mathematics, Computations and Statistics Vol. 8 No. 1 (2025): Volume 08 Nomor 01 (April 2025)
Publisher : Jurusan Matematika FMIPA UNM

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35580/jmathcos.v8i1.7318

Abstract

Indonesia is one of the countries with the highest seismic activity in the world due to its location at the convergence of three major tectonic plates. Understanding earthquake distribution patterns is crucial for disaster mitigation efforts and policy planning. This study applies the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm to cluster earthquake data in Indonesia based on magnitude and depth. The data used is secondary data from the Meteorology, Climatology, and Geophysics Agency (BMKG) for the period of January–December 2023. The research stages include data collection and preprocessing, applying the DBSCAN algorithm with the selection of Eps and MinPts parameters, and evaluating the clustering results using the silhouette coefficient and Davies-Bouldin Index (DBI). The results show that the combination of Eps = 0.5 and MinPts = 5 produces clusters with a silhouette coefficient of 0.3959 and a DBI of 0.7384, indicating a fairly good cluster structure. Visualization results reveal high-density clusters in active seismic zones and several smaller clusters representing specific earthquake characteristics. This study provides insights into the earthquake distribution patterns in Indonesia and demonstrates that DBSCAN effectively identifies complex cluster structures. The findings can serve as a reference for seismological studies and support earthquake disaster mitigation efforts.
Application of ARIMA-Decomposition in Forecasting Coffee Exports in Indonesia Nusrang, Muhammad; Fahmuddin, Muhammad; Hafid, Hardianti; Muthahharah, Isma
Inferensi Vol 8, No 1 (2025)
Publisher : Department of Statistics ITS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j27213862.v8i1.20899

Abstract

Cocoa is one of Indonesia's primary commodities, playing an important role in the national economy, particularly in the agricultural and export sectors. However, Indonesia's cocoa exports have shown a declining trend in recent years, caused by a reduction in cocoa production. Therefore, more accurate forecasting is needed to support effective decision-making and maintain the competitiveness of this commodity. This research aims to obtain forecasts for cocoa exports in Indonesia using the ARIMA-decomposition method. The data used is secondary data obtained from the Central Statistics Agency's publication website. The data used is monthly data from 2014-2024 using the ARIMA-decomposition method The cocoa export variable referred to in this research is the volume of cocoa exports in Indonesia per month. The research results show that there are two models obtained, namely the ARIMA (1,0,0) and ARIMA (0,0,1) models. The ARIMA model (0,0,1) is the best because it has a smaller RMSE value than the ARIMA model (1,0,0). With results of forecasting cocoa export values using the hybrid ARIMA-decomposition method, namely January 2024 is 90,756,803.63, February 2024 is 94,087,978.29, March 2024 is 100,169,842.39, April 2024 is 90,693,529.69, May 2024 is 93,809,122.09, June 2024 is 100,601,810.69, July 2024 is 99,660,519.59, August 2024 is 105,630,962.89, September 
Classification Poverty Levels in Indonesia Using Discriminant Analysis Muthahharah, Isma; Hafid, Hardianti
Journal of Mathematics, Computations and Statistics Vol. 8 No. 1 (2025): Volume 08 Nomor 01 (April 2025)
Publisher : Jurusan Matematika FMIPA UNM

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35580/jmathcos.v8i1.6816

Abstract

Poverty is a complex global challenge affecting countries like Indonesia that seek to improve the welfare of their citizens. Although the number of Indonesia's poor has fluctuated over the past few years, the study shows a decline in 2022. Using Multivariate Discriminant Analysis, this study aims to classify poverty levels in Indonesian provinces. Previous findings highlighted the relationship between the poverty depth index and average and duration of schooling. Through the development of classification models, this research seeks to provide a better understanding of poverty factors and support more effective policymaking in combating poverty in various regions. Using secondary data from the Central Bureau of Statistics in 2022, this research is quantitative research that produces important insights for the formulation of poverty eradication policies and programs in Indonesia. The result is the low provincial group of 20 provinces only 10 provinces are correctly predicted, the remaining 10 are predicted in the high province group. The same thing happened in the high province group of 13 provinces, only 9 provinces were correctly predicted, while the remaining 4 were predicted in the low group.