p-Index From 2020 - 2025
17.435
P-Index
This Author published in this journals
All Journal Prosiding SNATIF Infotech Journal PROCEEDING IC-ITECHS 2014 JITEK (Jurnal Ilmiah Teknosains) JURNAL TEKNIK INFORMATIKA DAN SISTEM INFORMASI INTECOMS: Journal of Information Technology and Computer Science IJISTECH (International Journal Of Information System & Technology) Indonesian Journal of Applied Informatics Jurnal Teras Kesehatan JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika) Jurnal Teknologi Terpadu Journal of Information System, Applied, Management, Accounting and Research Jurnal ICT : Information Communication & Technology Jurnal Manajemen Informatika dan Sistem Informasi JTIK (Jurnal Teknik Informatika Kaputama) Jurnal Informa: Jurnal Penelitian dan Pengabdian Masyarakat Jurnal Bumigora Information Technology (BITe) Journal of Advanced in Information and Industrial Technology (JAIIT) Infotek : Jurnal Informatika dan Teknologi Madaniya Tematik : Jurnal Teknologi Informasi Komunikasi Infotech: Journal of Technology Information SKANIKA: Sistem Komputer dan Teknik Informatika Jurnal Teknik Informatika (JUTIF) IJISTECH Infotech: Jurnal Informatika & Teknologi Jurnal Pendidikan dan Teknologi Indonesia DEVICE International Journal Software Engineering and Computer Science (IJSECS) Jurnal Dinamika Informatika (JDI) Jurnal Teknik Informatika Jurnal Informatika Teknologi dan Sains (Jinteks) Duta.com : Jurnal Ilmiah Teknologi Informasi dan Komunikasi Asian Journal of Community Services (AJCS) Mafaza : Jurnal Pengabdian Masyarakat STORAGE: Jurnal Ilmiah Teknik dan Ilmu Komputer Proceeding of International Conference Health, Science And Technology (ICOHETECH) Prosiding Seminar Nasional Teknologi Informasi dan Bisnis Innovative: Journal Of Social Science Research Journal of Software Engineering and Information System (SEIS) Journal Of Artificial Intelligence And Software Engineering SmartComp RESLAJ: Religion Education Social Laa Roiba Journal Kesatria : Jurnal Penerapan Sistem Informasi (Komputer dan Manajemen) International Journal of Community Service Implementation
Claim Missing Document
Check
Articles

HUBUNGAN ANTARA JUMLAH KELAHIRAN BALITA DENGAN JUMLAH BALITA STUNTING Binuko, Raafika Studiviani; Maulindar, Joni
JURNAL TERAS KESEHATAN Vol 6 No 1 (2023): Jurnal Teras Kesehatan
Publisher : Lembaga Penelitian dan Pengabdian kepada Masyarakat (LPPM) Politeknik Al Islam Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.38215/jtkes.v6i1.106

Abstract

Disorders experienced by babies caused by stunted growth are commonly called stunting. The number of sufferers in toddlers in Indonesia is very large, so this has received the attention of the government. Several factors cause stunting in toddlers, including lack of food intake and exclusive breastfeeding in toddlers. However, the percentage and the relationship between the number of babies born and the possibility of stunting are unknown, which is the basis for this research. The purpose of this study was to determine the relationship between the number of babies born and the possibility of stunting babies. Research conducted using regression analysis is used to determine the relationship between variables. The sample data used in this study were 157 toddlers. The data collection technique used is the collection of primary data and secondary data. Based on the results of the analysis conducted by the researchers, the correlation value between the number of babies born and the number of stunted babies is 0.38 (very low category). Therefore, it can be concluded that the relationship between the number of babies born and the likelihood of stunting babies has a very low significance level.
Utilization of the Internet of Things in Monitoring Hydroponic Lettuce Cultivation Nugroh, Heri; Maulindar, Joni; Irawan, Ridwan Dwi
Jurnal Bumigora Information Technology (BITe) Vol. 6 No. 1 (2024)
Publisher : Universitas Bumigora

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30812/bite.v6i1.4042

Abstract

Background: Urban residents who create agricultural systems with hydroponic techniques are very busy and do not have time to monitor plant growth.Objective: This study aims to utilize the Internet of Things (IoT) in monitoring hydroponic lettuce cultivation with the Nutrient Film Technique (NFT) system using ESP32.Methods: The method used in this study is Rule-Based Automatic Control for monitoring hydroponic lettuce cultivation.Result:The results of this research are successfully building a monitoring system with a web interface and mobile interface has been successfully built. The system that was built successfully controlled pH and hydroponic nutrients automatically with a pH sensor accuracy of 97.19% and a nutrient sensor of 97.815%.Conclusion: The implementation of a control and monitoring system for hydroponic lettuce cultivation can be applied because it has high accuracy.
Implementasi Internet of Things untuk Sistem Pemantauan dan Optimasi Energi Rumah Tangga Rifa'i, Rifan; Lestari, Wiji; Maulindar, Joni
Innovative: Journal Of Social Science Research Vol. 5 No. 3 (2025): Innovative: Journal Of Social Science Research
Publisher : Universitas Pahlawan Tuanku Tambusai

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31004/innovative.v5i3.19421

Abstract

Penelitian ini mengembangkan dan mengimplementasikan sistem pemantauan serta pengendalian konsumsi energi listrik berbasis Internet of Things (IoT) di lingkungan rumah tangga menggunakan NodeMCU ESP8266 dan sensor arus ACS712. Sistem ini mampu mengukur dan mengirimkan data konsumsi energi secara real-time ke dashboard visualisasi berbasis Blynk/Web melalui protokol MQTT. Pengujian sistem menunjukkan tingkat akurasi pengukuran dengan rata-rata error di bawah 5% dibandingkan alat ukur standar, serta kemampuan memberikan notifikasi otomatis saat terjadi lonjakan daya berlebih. Data historis penggunaan energi juga berhasil direkam untuk analisis pola konsumsi harian pada perangkat rumah tangga seperti kipas angin, lampu LED, dan charger. Hasil penelitian menunjukkan bahwa sistem ini efektif, responsif, dan mudah digunakan, dengan biaya implementasi yang rendah. Namun, sistem masih memiliki keterbatasan terkait ketergantungan koneksi Wi-Fi dan belum adanya fitur kontrol otomatis serta prediksi konsumsi energi. Rekomendasi pengembangan selanjutnya meliputi integrasi algoritma machine learning untuk meningkatkan kecerdasan sistem dan optimasi penggunaan energi secara proaktif.
Optimalisasi Teknologi IoT untuk Penyemprotan Tanaman Padi Pujiati Edy Santoso, Elysa Mei; Pradana, Afu Ichsan; Maulindar, Joni
Innovative: Journal Of Social Science Research Vol. 5 No. 3 (2025): Innovative: Journal Of Social Science Research
Publisher : Universitas Pahlawan Tuanku Tambusai

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31004/innovative.v5i3.19422

Abstract

Pertanian modern menuntut efisiensi dalam pengelolaan sumber daya, termasuk proses penyemprotan air, nutrisi, dan pestisida. Penelitian ini merancang sistem penyemprotan otomatis berbasis IoT pada tanaman padi menggunakan NodeMCU ESP8266, sensor DHT11, soil moisture sensor, dan LDR. Data sensor digunakan untuk mengaktifkan pompa penyemprot secara otomatis berdasarkan kondisi lingkungan. Sistem terhubung dengan aplikasi Blynk untuk pemantauan real-time. Hasil menunjukkan sistem mampu mendeteksi perubahan suhu, kelembapan, dan cahaya secara akurat, dengan respon otomatis rata-rata di bawah 2 detik. Contohnya, pompa aktif saat kelembapan tanah <30% dan berhenti setelah mencapai ambang batas. Pemantauan melalui Blynk berjalan stabil. Sistem terbukti efektif dan potensial untuk otomatisasi pertanian skala kecil. Ke depan, pengembangan dapat mencakup integrasi machine learning untuk prediksi kebutuhan penyemprotan serta pengendalian berbasis zona lahan guna meningkatkan efisiensi dan skalabilitas.
Perancangan Sistem Rekomendasi Pemilihan Objek Wisata Karanganyar Dengan Metode Knowledge Base Nugroho, Nur Cahyo; Moh. Muhtarom; Maulindar, Joni; Hartanti, Dwi
Infotek: Jurnal Informatika dan Teknologi Vol. 8 No. 2 (2025): Infotek : Jurnal Informatika dan Teknologi
Publisher : Fakultas Teknik Universitas Hamzanwadi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29408/jit.v8i2.30503

Abstract

Karanganyar Regency has significant potential in the tourism sector, especially nature tourism. However, the abundance of destination choices often makes it difficult for tourists to determine places that match their preferences. Currently available information is general and cannot be tailored to the specific needs of each user, making the decision-making process less efficient. This research proposes a knowledge-base recommendation system designed to assist users in selecting tourist destinations in Karanganyar according to their preferences. This system utilizes five main attributes: category, location, ticket price, rating, and facilities. System development was carried out using the Waterfall method, which includes requirements analysis and system design stages. User input is processed by matching it against the tourism data knowledge base using specific rules, and similarity calculations are performed to measure the degree of resemblance between user preferences and available tourism data. Based on similarity calculation results for 10 nature tourism data points, the system successfully recommended a destination with the highest similarity value of 0.991, namely Bukit Mongkrang, which best matched the user's selected criteria. Bukit Mongkrang met the user's desired criteria, being located in Tawangmangu, classified as nature tourism, having a mid-range ticket price, a rating 0.2 higher than the user's preference, and providing key facilities sought by the user. The results of this knowledge-base recommendation system modeling can serve as a reference for developing similar systems in the tourism field.
Sistem Peminjaman Alat Laboratorium Berbasis RFID dan IoT di Fakultas Kedokteran Gigi UMS Mulyanto, Hari; Maulindar, Joni; Lestari, Wiji
Infotek: Jurnal Informatika dan Teknologi Vol. 8 No. 2 (2025): Infotek : Jurnal Informatika dan Teknologi
Publisher : Fakultas Teknik Universitas Hamzanwadi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29408/jit.v8i2.30631

Abstract

Laboratories play a crucial role in supporting academic activities at health education institutions. However, inventory management at the Laboratory of the Faculty of Dentistry, Universitas Muhammadiyah Surakarta (UMS), is still conducted manually, leading to recording errors, service delays, and difficulties in real-time equipment monitoring. These issues hinder students from accessing information about the availability and location of equipment needed during practical sessions. This study aims to develop a laboratory equipment loan administration system using Radio Frequency Identification (RFID) technology integrated with the Internet of Things (IoT). The system was developed using the prototyping method, utilizing the ESP8266 and RFID RC522 sensor as the main components to support automated, contactless identification of equipment. The developed system is capable of digitally recording and monitoring the borrowing and returning of equipment in a structured and real-time manner. Testing results show that the system functions properly and meets user needs, although it has a limitation in RFID reading distance, with a maximum range of only 3 cm. This constraint presents a challenge for field implementation. Overall, the system has proven to improve efficiency, accuracy, and transparency in laboratory inventory management and supports the digitalization of technology-based equipment loan processes.
Training IoT Development for Enhancing Search and Rescue Tracking and Educational Tools Maulindar, Joni; Andrianto, Albertus Ari; Nandita Sekar Sukma Dewi
Asian Journal of Community Services Vol. 3 No. 8 (2024): August 2024
Publisher : PT FORMOSA CENDEKIA GLOBAL

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55927/ajcs.v3i8.10784

Abstract

The Internet of Things (IoT) Development Training at Universidade Oriental Timor Lorosa’e aims to address challenges in tracking search and rescue teams and enhance educational tools. This training is designed to provide an in-depth understanding of IoT technology and its applications in operational and educational contexts. The methods used include theoretical sessions, hands-on practice, and project evaluation. The evaluation results show a significant increase in participants' knowledge levels: understanding of IoT concepts increased from 40% to 85%, knowledge of IoT applications rose from 35% to 80%, the ability to use IoT devices improved from 30% to 75%, and skills in developing IoT systems advanced from 25% to 70%. The success of this training reflects the positive impact of IoT technology in enhancing participants' skills, potentially bringing long-term benefits to both fields discussed at Universidade Oriental Timor Lorosa’e.
PREDICTION AND PREVENTION OF DISEASE DIAGNOSIS DELAY USING DATA MINING METHODS IN HEALTHCARE QUALITY MANAGEMENT Maulindar, Joni; Guterres, Juvinal Ximenes; Rosita, Riska
Proceeding of the International Conference Health, Science And Technology (ICOHETECH) 2023: Proceeding of the 4th International Conference Health, Science And Technology (ICOHETECH)
Publisher : LPPM Universitas Duta Bangsa Surakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47701/icohetech.v4i1.3376

Abstract

This study analyzes the issue of disease diagnosis delay in healthcare quality management using data mining methods. The aim is to understand the relationship between several key variables and diagnosis delay for various diseases. The study focuses on the variables of Age, Symptom Duration, Physician Experience, and Diagnosis Delay. Advanced data mining methods are employed to predict and prevent disease diagnosis delays. The results of this study present the findings from the analysis of the collected dataset. The dataset consists of patient information, including attributes such as Patient ID, Age, Symptom Duration, Physician Experience, Diagnosis Delay, and Treatment Initiation. Each attribute plays a crucial role in understanding and predicting diagnosis delay. The approach using linear regression yields coefficients [0.03260123, 0.24605912, 0.01765057, 1.09631713], indicating the influence of each variable on Diagnosis Delay. The Mean Squared Error (MSE) value of 0.7926 signifies the model's ability to predict Diagnosis Delay accurately. The scatter plot illustrates the linear relationship between actual Diagnosis Delay and predicted Diagnosis Delay. The Pearson's Correlation Coefficient of 0.5222 indicates a moderate positive correlation between the two. However, the residual plot indicates a tendency for underestimation of Diagnosis Delay for higher values.
Challenges in The Academic Promotion Process: Perspectives From Faculty Members Maulindar, Joni; Awang Long, Zalizah; Che Mustapha, Jawahir; Purnomo, Singgih
Proceeding of the International Conference Health, Science And Technology (ICOHETECH) 2024: Proceeding of the 5th International Conference Health, Science And Technology (ICOHETECH)
Publisher : LPPM Universitas Duta Bangsa Surakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47701/icohetech.v5i1.4127

Abstract

The academic promotion process faces various challenges that cause delays for faculty members in reaching higher ranks. This research aims to identify and analyze the factors contributing to delays in the academic promotion process. The research method used is a quantitative approach, with data collection techniques involving the distribution of questionnaires to faculty members who are currently undergoing or about to undergo the academic promotion process. The research results indicate that the lack of transparency in rules, policy changes, evaluation complexity, communication limitations, and institutional support all have a significant and equal impact on the challenges of academic promotion, with each factor having a coefficient of 0.2000. The R-squared and Adjusted R-squared values of 1.000 indicate that this model can explain the entire variation in academic promotion challenges. The high statistical significance of all coefficients suggests that these results are almost certainly not due to chance. Data analysis also shows that there is little autocorrelation in the model's residuals, and the residual distribution is nearly normal. These findings highlight the importance of transparency, policy consistency, effective communication, and institutional support in the academic promotion process. Improvements in these areas are expected to reduce the challenges faced by faculty members during the promotion process
Intelligent Traffic Sign Detection Using Yolov9 Pradana, Afu Ichsan; Harsanto, Harsanto; Maulindar, Joni
Proceeding of the International Conference Health, Science And Technology (ICOHETECH) 2024: Proceeding of the 5th International Conference Health, Science And Technology (ICOHETECH)
Publisher : LPPM Universitas Duta Bangsa Surakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47701/icohetech.v5i1.4205

Abstract

This research examines the automatic detection and classification of traffic signs using artificial intelligence (AI) and computer vision technologies. As urban traffic increases, quickly and accurately recognizing traffic signs becomes a challenge, especially under adverse conditions such as bad weather and limited visibility. Conventional technologies that rely on human vision are prone to errors, so an automated solution is needed. This research uses the YOLOv9 algorithm for real-time traffic sign detection, utilizing the Generalized ELAN (GELAN) architecture that combines the advantages of CSPNet and ELAN for efficiency and accuracy. The dataset used consists of 1924 images processed through various stages, including data augmentation and normalization. The model was trained for 15 epochs with fairly high accuracy results in the prohibitory, danger, and mandatory sign categories. However, there were still some misclassifications, especially in the prohibitory category which was sometimes mistakenly detected as another category or background. Overall, the model performed well in detecting traffic signs in various environmental conditions, but still needs improvement to increase accuracy in certain cases.
Co-Authors Abdullah Abdullah Syaifudin Aditya Rachman Putra Afu Ichsan Pradana Agil Husnul Khotimah Agustina Srirahayu Ahmad Qashid H Ahmad Setiawan Aji, Sindhu Purnomo Akbar Galih Saputra Akbar Akbar, Akbar Galih Saputra Akbar, Reza Maulana Aldin Fathiray Ananda, Naufal Choirul Andreas Abi Permana Andrianto, Albertus Ari Anggita, Febri Arif Anisatul Farida Annas Setiawan Prabowo Anugrah Putra, Muhammad Ardani, Hasby Arif Ardhianto, Aan Ardiyanto, Kevin Ardiyanto, Marta Arif Eko Fitrianto Arif Wicaksono Septyanto Arnan Dwi Arsandy, Noelino Grevansha Atina, Vihi Avianto Adi Pratama Awang Long, Zalizah Azza Al Abbas, Abdullah A’an Jati Susilo Badrudin, Muhamad Bagas Mutaqqi Bagaskara, Ikrar Bagos Erwanto Bagus Prakoso, Ahmad Bahrul Aziz Rifai BAHTIAR, YUSUF Bayu Tri Pramono Berlian Agustina, Anggun Binuko, Raafika Studiviani Dwi brigitta harlim Che Mustapha, Jawahir Christopher Jody Widiyono Da Costa, Alexandre Dewi, Nandita Dewi, Nandita Sekar Sukma Dhimas Arya Rakadipa Didik Kurniawan Difan Agra Susilo Dika Adi Pratama Dimas Abimanyu Sutrisno Putro Dimas Cahyo utomo Dison Librado Dita Putra Pratama Divangga Revansa Arya Pradhana Dwi Hartanti Dwi Hartanti Dwi Hartanti Dwi Kurniawan Saputro Dwiirawan, Ridwan Dyah Aprimavista Cahyani Edy Kurniawan Eko Purwanto Em Sutrisna Enggar Wijaya Putra Erlinawati, Mira Ery Permana Yudha Ester Anugrayningtyas Fachruddin Edi Fandi Aziz Pratama Fathur Iqbal Hilmi Ulhadi FAULINDA ELY NASTITI Faulinda Ely Nastiti Firdaus, Azkha Brilliant Fitria Eko Nurjanah Fitroh Ahmad Abdul Aziz Frisca Tri Arumsari Guterres, Juvinal Ximenes Hafid Affan Wahid Hamna Zakiya , Nasywa Hani Rifdah Azizah Hanif Hilmi, Muhammad Hanif Nur Ahmad Hari Windiyastuti Harsanto, Harsanto Hartanti, Dwi Hartanto, Didik Mayur Hasanah, Herliyani Hidayat, Almaranda Aisyanissa Hiyarunnisa Kahes Waypi Ichsan Pradana, Afu Ichwani, Achmad immaculata yolia dewi Widayanti Indah, Ratna Puspita Indrastata, Ilham Buyung Indriyas Kukuh Wijayanti Intan Oktaviani Iqbal Hanan Junaidi Irawan, Egie Irawan, Ridwan Dwi Istiana Hanifah Istiqomah, Yasinta Jawahir Che Mustapha Yusuf Jawahir Che Mustapha Yusuf Jofan Fathurahman Juvinal Ximenes Guterres Karlina Kusuma Ningrum Kevin Yoga Ananta Kurniawan, Daniel Ade Leny Monica Lidia Earlene Rendhiva Lola Sekar Arum Lufti Puspitasari Margaretha Evi Yuliana Margaretha Evi Yuliana Mashkul Ryan Ibrahim Matin Muhith Meraldy Fiko Rastio Ajie Mink Poo Lexy Utomo Mink Poo Lexy Utomo Moh Muhtarom Moh. Muhtarom Muhammad Daivany Nur Auliya Saleh Muhammad Nur Ikhsanudin Mulyanto, Hari Munawaroh, Maysani Mustapha, Jawahir Che Nadia Hepyntha Nailurrizqi, Adistya Nanda Ramadhani, Fikko Nandita Sekar Sukma Dewi Nibras Faiq Muhammad Ningrum, Karlina Kusuma Nugroh, Heri Nur Auliya Saleh, Muhammad Daivany Nur Cahyo Nugroho Nurchim Nurchim Nurfadilah Nurfadilah Nurlaili, Dewi Nurohman Nurohman, Nurohman Nurrohman Oktaviyana Dwi Hendra Jati Pamekas, Bondan Wahyu Permatasari, Hanifah Praba M.A.R.K Pradana, Afu Ichsan Pradana, Gibran Arya Prajadi Cipto Utomo, Bangun Pramoedya Ananta Dzikri Pramono Pramono prastiwi, yuyun Prastya, Alvian Bagus Prastyo, Okik Dwi Pratiwi, Dinita Christy Pujiati Edy Santoso, Elysa Mei Puput Dwi Mandiri Puput Dwi Mandiri Purwanto, Eko Putra Pradana, Gibrand Raafika Studiviani Dwi Binuko Raditya Koesyan Dipo P Rais Suryo Wahono Rendi Enggar Bintang Pratama Restu Gilang Wijanarko Reza Mar Hendra Putra Rifa'i, Rifan Rifan Amirul Hafizh, Muhammad Rifqi Firdausi Arafad Riska Rosita Rizki Hendra Rizqy Mahendra Abdul Rahman Romy Rajawali Nusantara Saifullah Rudi Susanto Saifudin Umar Sandy Yustisio O Saputra, Muchammad Yoga Setiawan, Gilang Setya Pradhana, Wahyudi Shelvi Azizah Sindhu Purnomo Aji Singgih Purnomo SRI SUMARLINDA Studiviani Dwi Binuko, Raafika Suci Bunga Pritalina Sudarminingsih Sudarminingsih Sulistyo Adi Prasetyo Syahrul Agung Fathoni Tasya Mutiara Diva Tasya Mutiara Diva Tesalonika, Angel Titi Jayanti Tiur Bunga Gadissa Tory, Alfa Rado Andre Yusa Saka Vita Sofia Prihatini Wahyu Adi Pratama Wahyu Aji Saputro, Lintang Wahyu Kuncoro Wahyu Pamekas, Bondan Warihaji, Wijasena Warta, Danu Widayanti, immaculata yolia dewi Wihan Perkasa Nugraha Putra Wijayanti, Indriyas Kukuh Wijayanti, Sefi Ayuk Wiji Lestari WIJI LESTARI Wijiyanto Yafa Arsyida Aulia Rakhma Yasinta istiqomah Yeyen Santi Putri Yoma Patria Risky, Satya Yusuf Bahtiar Zaenuar Erfandi Zalizah Binti Awang Long