Claim Missing Document
Check
Articles

Perancangan Sistem E-Voting Pemilu Raya Mahasiswa Di Universitas Dinamika Bangsa Sika, xaverius; Pratama, Yovi; Riyadi, Willy; Kisbianty, Desi; Zulia, Restutik
Jurnal Ilmiah Media Sisfo Vol 18 No 2 (2024): Jurnal Ilmiah Media Sisfo
Publisher : LPPM Universitas Dinamika Bangsa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33998/mediasisfo.2024.18.2.1990

Abstract

Pemilihan umum Badan Eksekutif Mahasiswa (BEM) di Universitas Dinamika Bangsa (UNAMA) saat ini masih menggunakan sistem manual yang rentan terhadap kesalahan penghitungan, memakan waktu, dan membatasi partisipasi mahasiswa. Penelitian ini bertujuan untuk mengatasi permasalahan tersebut dengan mengimplementasikan sistem e-voting berbasis website menggunakan framework Laravel. Sistem e-voting yang dikembangkan akan terintegrasi dengan Sistem Informasi Akademik (SIAKAD) untuk memverifikasi identitas pemilih dan memastikan setiap mahasiswa hanya memiliki satu hak suara. Laravel dipilih karena kemudahan pengembangan dan fitur-fiturnya yang mendukung pembuatan aplikasi web yang dinamis dan aman. Fitur-fitur utama sistem ini meliputi pendaftaran pemilih secara otomatis dari SIAKAD, proses voting yang sederhana dan cepat, serta penghitungan suara secara real-time. Dengan menggunakan sistem e-voting berbasis Laravel, diharapkan dapat meningkatkan akurasi hasil pemilihan, mempercepat proses rekapitulasi suara, serta meningkatkan partisipasi mahasiswa. Selain itu, sistem ini juga dapat mengurangi biaya penyelenggaraan pemilihan dan meningkatkan transparansi proses pemungutan suara.
PENGGUNAAN YOLO UNTUK DETEKSI ROBOT DAN GAWANG PADA ROBOT SEPAK BOLA BERODA Surya, Muhammad; Toscany, Afrizal; Saputra, Chindra; Pratama, Yovi; Bustami, M Irwan
The Indonesian Journal of Computer Science Vol. 14 No. 1 (2025): The Indonesian Journal of Computer Science (IJCS)
Publisher : AI Society & STMIK Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33022/ijcs.v14i1.4575

Abstract

The ability to detect objects in real-time is a crucial factor in enhancing a robot's performance in understanding and adapting to dynamic environments. This research aims to develop and implement an object detection system on a wheeled soccer robot using the YOLOv11 algorithm, applied to images generated by omnidirectional and front-facing cameras. The system leverages deep learning technology for data labeling, model training, and performance evaluation. Testing was conducted by comparing the object detection results from both types of cameras, as well as analyzing performance metrics such as precision, recall, F1-score, and accuracy. The results show that the YOLOv11 model is effective in detecting objects in real-time, with a detection accuracy of 95.91% for the front camera and 96.7% for the omnidirectional camera. The highest precision and recall were recorded in the robot class, with precision of 99.12% and recall of 97.40% for the front camera, and precision of 96.5% and recall of 97.8% for the omnidirectional camera. The use of a combination of cameras proved to expand the robot's field of vision, enhancing object detection accuracy in dynamic environments. This research contributes to the implementation of object detection systems in robotics, particularly in the context of robot soccer competitions.
Design of WEB-Based Transportation Information System and Invoice Recapitulation at Chandra Lie Expedition Angelica, Felicia; Pratama, Yovi; Amroni, Amroni
International Conference on Business Management and Accounting Vol 3 No 1 (2024): Proceeding of International Conference on Business Management and Accounting (Nov
Publisher : Institut Bisnis dan Teknologi Pelita Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35145/icobima.v3i1.4670

Abstract

Chandra Lie Expedition is a truck rental company started by Chandra Lie in 2018 and used for shipping kernels, coal, palm oil, and shells. The address of this expedition is 36135, East Jambi District, Jalan Sentot Ali Basa Payo Agile. When admins want to report invoices, recapitulation of invoices previously recorded using the book technique, this often occurs errors in summing the total bill and entering the transaction date. The admin needs to use Microsoft Word to draft a road letter for the driver after creating an invoice recapitulation report. It will take some time. Owners and admins should meet daily to request invoice reports for the previous day. Data that is not connected to each other. The goal of the project is to develop a web-based design tool that will make it easier for actors to perform. The steps to be taken to solve this challenge include identification, information retrieval based on theoretical foundations, observation techniques, and analysis to identify solutions to the problems faced by the expedition. Devices and software serve as research tools and materials. The purpose of the conclusion of this study is to facilitate reporting and summary of invoice reports.
Peningkatan Keterampilan Kewirausahaan Mahasiswa Melalui Usaha Penjualan Puding Ubi Ungu Azzahra, Nia; Utama Putri, Anggy; Pratama, Yovi; Verna Anatasya, Rara; Adelia Putri, Ananda; Ramadhani, Utari; Dinata, Despan; Enjelina, Mia; Sariyani
JURNAL LENTERA ILMIAH PENGABDIAN MASYARAKAT Vol. 1 No. 2 (2024): JLIPM - DESEMBER
Publisher : CV. Q2 Lantera Ilmiah Institut

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Kewirausahaan merupakan aspek krusial dalam pengembangan sumber daya manusia, terutama di kalangan mahasiswa, yang berperan sebagai generasi penerus bangsa. Dalam konteks ini, artikel ini membahas inisiatif penjualan puding ubi ungu sebagai upaya untuk meningkatkan keterampilan kewirausahaan mahasiswa sekaligus memberikan alternatif camilan sehat bagi masyarakat. Puding ubi ungu, yang kaya akan nutrisi dan antioksidan, tidak hanya memenuhi kebutuhan pasar akan makanan sehat, tetapi juga mendukung gaya hidup sehat. Melalui proses produksi dan pemasaran yang terencana, mahasiswa dapat menerapkan teori kewirausahaan yang telah dipelajari, serta berinovasi dalam menciptakan produk yang menarik. Kegiatan ini diharapkan dapat memberikan pengalaman praktis yang berharga, meningkatkan kreativitas, dan berkontribusi positif terhadap perekonomian lokal. Selain itu, artikel ini juga mengupas manfaat kesehatan dari puding ubi ungu, cara pengolahannya, dan strategi pemasaran yang diterapkan. Dengan demikian, usaha ini tidak hanya bermanfaat bagi mahasiswa, tetapi juga bagi masyarakat luas, menciptakan lapangan kerja baru, dan meningkatkan kesadaran akan pentingnya pola makan sehat.
Perancangan Aplikasi Simpan Pinjam Pada KUD Harapan Makmur Tebing Tinggi Indana Arum , Refi; Rohaini , Eni; Pratama, Yovi
Jurnal Informatika Dan Rekayasa Komputer(JAKAKOM) Vol 5 No 1 (2025): JAKAKOM Vol 5 No 1 APRIL 2025
Publisher : LPPM Universitas Dinamika Bangsa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33998/jakakom.2025.5.1.2176

Abstract

KUD Harapan Makmur Tebing Tinggi merupakan salah satu koperasi di Provinsi Jambi yang pengolahan data simpan pinjam menggunakan buku agenda. Sehingga terjadi permasalahan yaitu proses pengolahan data simpanan dan pinjaman yang membutuhkan waktu cukup lama dan juga terkadang terjadi salah dalam perhitungan jumlah simpanan dan pinjaman yang ada pada anggota, sulitnya mendapatkan informasi mengenai data simpanan dan pinjaman dikarenakan harus datang ke tempat secara langsung dan pembuatan laporan-laporan yang tidak terselesaikan pada waktunya khususnya untuk laporan simpanan dan laporan pinjaman. Oleh karena itu, penelitian ini bertujuan memberikan solusi untuk permasalahan yang terjadi dengan menawarkan aplikasi simpan pinjaman menggunakan bahasa pemograman PHP dan DMBS MySQL dimana penulis melakukan pengembangan sistem dengan metode waterfall dan menggunakan pendekatan model sistem unified model language menggunakan use case diagram, activity diagram, class diagram dan flowchart. Sistem informasi simpan pinjam pada KUD Harapan Makmur Tebing Tinggi memberikan hasil yang memudahkan pegawai dalam melakukan pengelolaan data simpan pinjam dan mencetak laporan yang diperlukan dan juga memudahkan anggota dalam melihat informasi transaksi dan mengajukan pinjaman
Perancangan Sistem E-Lapor Pada Kantor Desa Lagan Tengah Berbasis Web Rezky Pramudia, Muhammad; Rohaini, Eni; Pratama, Yovi
Jurnal Informatika Dan Rekayasa Komputer(JAKAKOM) Vol 5 No 1 (2025): JAKAKOM Vol 5 No 1 APRIL 2025
Publisher : LPPM Universitas Dinamika Bangsa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33998/jakakom.2025.5.1.2177

Abstract

Kantor Desa Lagan Tengah merupakan salah satu instansi pemerintahan yang mengelola administrasi pelayanan masyarakat khusus Desa Lagan tengah, Kecematan Geragai, Kabupaten Tanjung Jabung Timur. Adapun permasalahan yang dihadapi oleh Kantor Desa Lagan Tengah yaitu dalam proses Pengaduan Masyarakat belum dilakukan dengan maksimal karena Pengaduan Masyarakat  tidak terkomputerisasi dengan baik dimana data di simpan pada file-file yang terpisah dan ditempatkan pada folder yang cukup banyak. Selain itu, bagi masyarakat yang membutuhkan informasi berkaitan dengan program Pengaduan Masyarakat, Pelaporan Pencurian, Kekerasan dan sejenisnya harus datang langsung ke Kantor Desa Lagan Tengah untuk mendapatkan informasi yang dibutuhkan hal tersebut dinilai mempersulit masyarakat apabila tidak langsung membawa persyaratan ke kantor, maka masyarakat akan bolak-balik dari kantor ke rumah untuk menyiapkan data yang dibutuhkan. Tujuan penelitian ini adalah untuk menganalisa sistem yang sedang berjalan, agar dapat mengatasi masalah-masalah yang dihadapi pada pada Kantor desa lagan tengah, dengan cara merancang Perancangan Sistem E-Lapor Pada Kantor Desa Lagan Tengah Berbasis Web hingga menghasilkan aplikasi pengolahan data yang di harapkan dapat mempermudah dalam pengolahan data maupun pembuatan laporan.
Increasing the Accuracy of Brain Stroke Classification using Random Forest Algorithm with Mutual Information Feature Selection Fachruddin, Fachruddin; Rasywir , Errissya; Pratama, Yovi
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 8 No 4 (2024): August 2024
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29207/resti.v8i4.5795

Abstract

Brain stroke stands out as a leading cause of death, distinguishing it from common illnesses and highlighting the critical need to utilize machine learning techniques to identify symptoms. Among these techniques, the Random Forest (RF) algorithm emerged as the main candidate because of its optimal accuracy values. RF was chosen for its ensemble learning properties that optimize accuracy while simultaneously, bagging all outputs (DT), thus increasing its efficacy. Feature Selection, an important data analysis step, which is mainly achieved through pre-processing, aims to identify influential features and ignore less impactful features. Mutual Information serves as an important feature selection method. Specifically, the highest level of accuracy was achieved by cross-validating the test data - 10, resulting in 0.7760 without feature selection and 0.7790 with mutual information. Most of the attributes in the brain stroke dataset show relevance to the stroke disease class, but the resulting decision tree shows age as a particularly important node. So, the research results show that the selection feature (Mutual Information) can increase the accuracy of brain stroke classification, although it is not significant, namely an increase of 0.0030%. With an increase, where there is no significant difference, it can be said that almost all the attributes contained in the brain stroke dataset used have an influence on their relevance to the stroke disease class.
Enhancing Areca Nut Detection and Classification Using Faster R-CNN: Addressing Dataset Limitations with Haar-like Features, Integral Image, and Anchor Box Optimization Pratama, Yovi; Rasywir, Errissya; Suyanti; Siswanto, Agus; Fachruddin
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 9 No 3 (2025): June 2025
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29207/resti.v9i3.6496

Abstract

The classification and detection of areca nuts are essential for agriculture and food processing to ensure product quality and efficiency. The manual classification of areca nuts is time-consuming and prone to human error. For a more accurate and efficient automated approach, a deep learning-based framework was proposed to address these challenges. This study optimizes the Faster R-CNN by integrating Haar-like features and integral images to enhance object detection. However, dataset limitations, including low image quality, inconsistent lighting, cluttered backgrounds, and annotation inaccuracies, affect the model performance. In addition, the small dataset size and class imbalance hindered generalization. The Faster R-CNN model was trained with and without Haar-like Features and Integral Image enhancement. Performance was evaluated based on training loss, accuracy, precision, recall, F1-score, and mean average precision (mAP). The effects of the dataset limitations on detection performance were also analyzed. The optimized model achieved better stability, with a final training loss of 0.2201, compared to 0.1101 in the baseline model. Accuracy improved from 62.60% to 73.60%, precision from 0.6161 to 0.7261, recall from 0.3094 to 0.4194, F1-score from 0.2307 to 0.3407, and mAP from 0.1168 to 0.2268. Despite these improvements, dataset constraints remain a limiting factor. While the integration of Haar-like features and integral images into faster R-CNN contributes to detection accuracy, the study also reveals that high-resolution images, precise annotations, and dataset scale significantly amplify model performance.
Optimized Non-Overlapping Multi-Object Segmentation for Palm Oil Images Using FCN with Squeeze-and-Excitation and Attention Mechanisms Pratama, Yovi; Rasywir, Errissya; Siswanto, Agus
Scientific Journal of Informatics Vol. 12 No. 1: February 2025
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/sji.v12i1.22212

Abstract

Purpose: Palm oil plantation monitoring using UAV imagery presents significant challenges in multi-object segmentation due to homogeneous texture, low resolution, and difficulty in distinguishing disease symptoms. Traditional segmentation methods struggle to accurately separate overlapping and visually similar objects, reducing the effectiveness of automated analysis. This study aims to address these issues by proposing an optimized Fully Convolutional Network (FCN) incorporating Squeeze-and-Excitation (SE-Block) and Attention Mechanisms to enhance segmentation accuracy for multi-object, non-overlapping palm oil images. Methods: The proposed model utilizes ResNet50 as a backbone, integrating SE-Block to enhance the feature representation of important regions while suppressing less relevant features. Additionally, Attention Mechanisms are incorporated to improve the model's spatial understanding and feature discrimination, which is crucial for segmenting visually similar objects in UAV imagery. A dataset of UAV-captured palm oil images was used to train and evaluate the model, applying deep learning techniques for feature extraction and classification. Result: Experimental results demonstrate that the proposed method achieves an average Intersection over Union (IoU) of 0.7928, accuracy of 0.9424, precision of 0.9126, recall of 0.8622, F1-score of 0.8693, and mAP of 0.7673. The highest-performing model attained a maximum IoU of 0.8499 and an accuracy of 0.9490, significantly outperforming conventional FCN models. These findings confirm that incorporating SE-Block and Attention Mechanisms enhances segmentation accuracy, making the model more robust in handling UAV imagery complexities. Novelty: The novelty of this research lies in the integration of SE-Block and Attention Mechanisms within FCN for palm oil segmentation, specifically targeting multi-object, non-overlapping segmentation in challenging UAV imagery conditions. By improving feature extraction and spatial attention, this approach advances deep learning-based agricultural monitoring and can be extended to other remote sensing applications requiring high-precision segmentation.
Co-Authors Abdul Haris Abdul Harris Achpal Haddid Adelia Putri, Ananda Afrizal Nehemia Toscany Agus Siswanto Akbar Ramadhan Akwan Sunoto Alvito Widianto Amroni, Amroni Angelica, Felicia Anggraini, Dila Riski Anggy Utama Putri Annisa putri Anton Prayitno Arahmad Taupiq asih asmarani Bayu saputra Beni Irawan Borroek, Maria Rosario Bustami, M Irwan Cahyana Putra Pratama Candra Adi Rahmat Carenina, Babel Tio Chindra Saputra Defrin Azrian Desi Kisbianty, Desi Despita Meisak Dimas Pratama Dimas Yudha Prawira Dinata, Despan elvi yanti Emelia, Shinta Enjelina, Mia Errissya Rasywir Evan Albert Fachruddin Fachruddin Fachruddin Fachruddin Fachruddin Fachruddin Fachruddin Fachruddin, Fachruddin farchan akbar Feranika, Ayu Fingki Lamhot Pasaribu fiqri ansyah Hartiwi, Yessi Hendrawan Hendrawan Hendrawan Hendrawan Hendrawan Hendrawan Hilda Permatasari Hussaein, Ahmad Ilham Adriansyah ilham permana Imelda Yose Indana Arum , Refi Irawan Irawan Irawan Irawan Irawan, Beni Istoningtyas, Marrylinteri Janu Hadi Susilo Jopi Mariyanto Julia Triani khalil gibran ahmad Kholil Ikhsan Luthfi Rifky M Fikrul Hakimi M Reihan Al Fajri M.Rizky Wijaya Manyu, Dimas Abi Maria Rosario Borroek Marrylinteri Istoningtyas Marrylinteri Istoningtyas Marrylinteri Istoningtyas Marshal` Koko Anand masgo Maulana Qaedi Aufar Mayang Ruza Muhammad Afif Dzaky Khairullah Muhammad Diemas Mahendra Muhammad Irwan Bustami Muhammad Ismail Muhammad Riza Pahlevi MUHAMMAD SURYA Muhammad Wahyu Prayogi Muhammad Zulfi Tisna Tama Mumtaz Ilham S Mumtaz Ilham Syafatullah NAIBAHO, RONALD Najmul Laila Naldi Irfan Nanda Ghina Nia Azzahra Nur Aini Nurhadi Nurhadi Pahlevi, M. Riza Pahlevi, M.Riza Pareza Alam Jusia Pareza Alam Jusia, Pareza Alam Ramadhan Saputra, Tri Ramadhani, Utari Reza Pahlevi Rezky Pramudia, Muhammad Riki Bayu Andhika Rio Ferdinand ROBY SETIAWAN Rohaini, Eni Rosario B, Maria Rosario, Maria Rudolf Sinaga Sandi Pramadi Santoso Saparudin, Saparudin Sariyani SIKA, XAVERIUS Steven Ie Sudewo, Raden Tio Putra Sutoyo, Mochammad Arief Hermawan Suyanti taupiq, Arahmad Toscany, Afrizal Verna Anatasya, Rara Verwin Juniansyah virginia casanova andiko andiko Warcita Warcita WILLY RIYADI Xaverius Sika Yaasin, Muhammad Yanti, Elvi Yessi Hartiwi Yessi Hartiwi Yoga Rizki Yuga Pramudya Zahlan Nugraha Zulia, Restutik