cover
Contact Name
Juliana Fisaini
Contact Email
j.fisaini@usk.ac.id
Phone
+6281377412304
Journal Mail Official
jurnaltekniksipil@usk.ac.id
Editorial Address
Jurusan Teknik Sipil, Fakultas Teknik, Universitas Syiah Kuala Jl. Syech Abdurrauf No. 7 Darussalam, Banda Aceh 23111
Location
Kab. aceh besar,
Aceh
INDONESIA
Jurnal Teknik Sipil
ISSN : 20889321     EISSN : 25025295     DOI : http://dx.doi.org/10.24815/jts.v12i2.30788
Core Subject : Engineering,
Jurnal Teknik Sipil (Journal of Civil Engineering) Universitas Syiah Kuala is a scientific journal, published by Civil Engineering Department, Faculty of Engineering, Universitas Syiah Kuala. It is aimed at disseminating research results related to civil engineering fields, where readers of the journal are expected from civil engineering researchers/scientists, students in related fields, engineers, and practitioners in this field. Jurnal Teknik Sipil (Journal of Civil Engineering) Universitas Syiah Kuala publishes the scientific articles in area of civil engineering, as follows. Structural Engineering, Water Resources Engineering, Transportation Engineering, Geotechnical Engineering, Construction Engineering & Management, Urban Planning Geospatial and Geomatics Engineering, and Ocean Engineering
Articles 345 Documents
Pengaruh Substitusi BGA dan Abu Tempurung Kelapa Terhadap Karakteristik Marshall Pada Campuran AC-WC Fata, Chairul; Mutiawati, Cut; Lulusi, Lulusi
JURNAL TEKNIK SIPIL Vol 14, No 1 (2025): Volume 14 Nomor 1 Mei 2025
Publisher : Jurusan Teknik Sipil, Fakultas Teknik, Universitas Syiah Kuala

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24815/jts.v14i1.45004

Abstract

Kualitas perkerasan jalan ditentukan oleh material campurannya. Keterbatasan material membuat teknologi bahan semakin berkembang hingga memanfaatkan limbah. Salah satu limbah yang dimanfaatkan sebagai material filler adalah abu tempurung kelapa (ATK). Selain substitusi pada filler, substitusi juga dilakukan pada material perekat dengan mencampurkan Buton Granular Asphalt (BGA) ke dalam aspal. Tujuan penelitian ini ialah untuk mengetahui parameter uji Marshall terhadap campuran AC-WC dengan pemakaian ATK serta semen portland sebagai filler dengan kadar perbandingan 50:50, terhadap persentase BGA sebesar 5%, 7% dan 9% serta untuk mengetahui nilai durabilitas dari campuran AC-WC dengan penggunaan ATK serta semen portland sebagai filler terhadap persentase BGA. Kadar aspal optimum (KAO) yang didapat dengan metode overlapping ialah sejumlah 5,45%. Selanjutnya pembuatan benda uji campuran AC-WC dengan substitusi BGA dengan persentase 5%, 7%, dan 9%, dengan substitusi filler ATK sebesar 50% dan semen portland 50%. Berdasarkan pengujian, persentase terbaik adalah BGA 9% dengan nilai stabilitas sejumlah 1603,36 kg, flow sejumlah 2,73 mm, VIM sejumlah 4,83 %, VMA sebesar 17,82 %, VFA sebesar 72,91%, kepadatan sebesar 2,46 gr/cm3 dan MQ sebesar 590,50 kg/mm. Nilai durabilitas yang diperoleh persentase BGA 9% adalah 94,11% yang memenuhi standar minimum yang ditetapkan oleh Direktorat Jenderal Bina Marga 2018 Revisi 2 (2020) yaitu 90%.
Reducing Bandar-Lurus Flow-Velocity To Minimize Erosion of Batang-Kurao Riverbank, Padang Februarman, Februarman; Mera, Mas; Ginawa, Dega
JURNAL TEKNIK SIPIL Vol 14, No 1 (2025): Volume 14 Nomor 1 Mei 2025
Publisher : Jurusan Teknik Sipil, Fakultas Teknik, Universitas Syiah Kuala

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24815/jts.v14i1.42180

Abstract

The Bandar-Lurus River empties into the Batang-Kurao River at an almost perpendicular confluence. As a result, when the Bandar Lurus flowed the 2021-August-18 flood-discharge, for example, the Kurao river-bank collapsed. If this is allowed to last longer, then the resident houses near the river bank could be damaged. The flow velocity is predicted using the Manning formula, and the resistance coefficients are averaged using the Einstein-Banks formula. Both formulas are then solved using the Newton-Raphson method on the MS Excel platform. The objective of this study is to slow down the Bandar downstream velocity of the as slowly as possible to minimize damage to the Kurao river-bank. The first step is to lower the longitudinal slope of the Bandar bed from 0.0012 to 0.0007. As a result, the downstream velocity is expected to slow down from 1.85 to 1.68 m/s, and the water level is also estimated to drop from 6.79 to 5.98 m. The next step is to replace the Bandar-bed material from the ground with irregular sharp-rock fragments. Consequently, the velocity is expected to slow down from 1.68 to 1.19 m/s, but the water level is estimated to rise from 5.98 to 6.94 m. This is the Bandar velocity that can be engineered considering that the channel-top elevation in the downstream is only 8.24 m including the freeboard.
Analisis Respons Spektrum: State-Of-The-Art dan Pengembangan Kerangka Pemrograman Untuk Komputasi Ulza, Adrian; Afifuddin, Mochammad; Aulia, Teuku Budi; Huzaim, Huzaim; Abdullah, Abdullah
JURNAL TEKNIK SIPIL Vol 14, No 1 (2025): Volume 14 Nomor 1 Mei 2025
Publisher : Jurusan Teknik Sipil, Fakultas Teknik, Universitas Syiah Kuala

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24815/jts.v14i1.44764

Abstract

Abstract: This study summarizes the development of response spectrum analysis while introducing a Python-based programming framework for computing both elastic and inelastic response spectra. Validation is conducted using data from the 1940 El Centro earthquake, with results compared to those from a commercial application. The elastic response spectra from all methods show close agreement, whereas the inelastic responsedeveloped using a trilinear pushover curve with positive post-yield stiffness, post-ultimate strength deterioration, and a hysteretic modelcan produce higher or lower peak accelerations due to its dependence on input parameters. This open-source framework will be made available through a GitHub repository, allowing broader access for researchers and practitioners in earthquake engineering.Abstrak: Penelitian ini merangkum perkembangan analisis respons spektrum sekaligus menawarkan kerangka pemrograman berbasis Python untuk menghitung respons spektrum elastik dan inelastik. Validasi dilakukan dengan menggunakan data gempa El Centro 1940 dan membandingkan hasilnya dengan program komersil. Respons spektrum elastik dari semua metode menunjukkan kesesuaian yang tinggi, sedangkan respons inelastikyang dikembangkan menggunakan kurva pushover trilinier dengan kekakuan pasca-luluh positif, penurunan kekuatan pasca-kuat ultimit, serta model histeresisdapat menghasilkan percepatan puncak yang lebih tinggi atau lebih rendah karena ketergantungannya pada parameter input. Kerangka ini disediakan secara terbuka melalui repositori GitHub, sehingga dapat dimanfaatkan oleh peneliti dan praktisi rekayasa kegempaan.
Penetapan Daerah Banjir Menggunakan Model Hec-Ras Dua Dimensi (Studi Kasus: Das Tripa) Annisa, Nurul; Refika, Cut Dwi; Rizalihadi, Maimun; Ziana, Ziana; Shaskia, Nina
JURNAL TEKNIK SIPIL Vol 14, No 1 (2025): Volume 14 Nomor 1 Mei 2025
Publisher : Jurusan Teknik Sipil, Fakultas Teknik, Universitas Syiah Kuala

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24815/jts.v14i1.41934

Abstract

Bencana alam banjir dapat terjadi karena limpasan air sungai yang keluar dari alur sungai saat kapasitas sungai tidak mampu menampung aliran yang terjadi. Banjir akibat luapan air sungai juga terjadi di Daerah Aliran Sungai (DAS) Tripa, Aceh. Banjir yang terus berulang menimbulkan keresahan bagi masyarakat yang tinggal di sekitar daerah Sungai Krueng Tripa. Maka dari itu diperlukan kajian untuk melihat sebaran genangan banjir akibat dari meluapnya Sungai Krueng Tripa. Dalam menetapkan sebaran genangan banjir diperlukan analisis banjir rencana dengan metode Hidrograf Satuan Sintetis Soil Conservation Service (SCS) yang menghasilkan nilai debit banjir maksimum pada periode ulang 2, 5, 10, 25, 50, dan 100 tahun ialah sebesar 1273,35 m/dt, 2092,41 m/dt, 2670,03 m/dt, 3361,64 m/dt, 4036,57 m/dt, dan 4664,72 m/dt. Hasil perhitungan debit banjir di-input kedalam software HEC-RAS 2D dengan aliran unsteady flow dan menghasilkan luasan sebaran genangan banjir pada setiap periode ulang sebesar 41,29 km, 68,14 km, 86,66 km, 108,35 km, 128,58 km, dan 142,54 km. Pembentukan peta genangan banjir dibantu dengan software ArcGIS 10.8.2. Validasi genangan banjir hasil pemodelan HEC-RAS dengan titik sebaran banjir didapatkan persentase genangan banjir pada setiap periode ulang menggenangi 3,45%, 27,59%, 46,55%, 77,59%, 82,76%, dan 91,38% titik sebaran banjir di DAS Tripa.
Pengaruh Jenis Semen Portland Composite Cement dan Pozzolan Portland Cement Terhadap Faktor Konversi Kuat Tekan Beton Mutu Normal dan Tinggi Setyatama, Mohammad Sigit; Saputra, Elvis
JURNAL TEKNIK SIPIL Vol 14, No 1 (2025): Volume 14 Nomor 1 Mei 2025
Publisher : Jurusan Teknik Sipil, Fakultas Teknik, Universitas Syiah Kuala

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24815/jts.v14i1.44003

Abstract

With the advancement of concrete technology, including types of cement, materials, additives, test specimen shapes, and environmental conditions, the compressive strength conversion factors of concrete differ from those in PBI 1971, which is based on OPC cement. PBI 1971 does not yet account for conversion factors for high-strength concrete and requires adjustments for PCC and PPC cement. This study focuses on determining the compressive strength conversion factors for normal-strength and high-strength concrete at the ages of 3, 7, 14, 21, and 28 days using PCC and PPC cement, while also analyzing their effects on workability, compressive strength, and the rate of strength development. The research employs normal-strength concrete (25 MPa) and high-strength concrete (42 MPa) according to SNI standards, with the addition of 10% silica fume and 0.5% superplasticizer. Compressive strength tests were conducted using cylindrical specimens. The compressive strength results were modeled into regression equations, which were then used to calculate the conversion factors by dividing the average compressive strength of concrete at a specific age by the average compressive strength at 28 days.The results indicate that for normal-strength concrete, PCC cement yields higher conversion factors than PBI 1971 at 3 and 7 days, although the differences are not significant. Meanwhile, PPC cement tends to show higher values at 3 and 7 days due to its pozzolanic content. For high-strength concrete, the conversion factors for PCC and PPC cement are relatively similar to those in PBI 1971, except at 3 days, where PPC cement yields higher values. The conversion factors derived from this study are not significantly different from PBI 1971, and their application can be considered based on construction requirements, such as using PPC, PCC, or OPC cement for high early strength. PCC cement enhances workability and the rate of strength development, while PPC cement provides higher early and final compressive strength, applicable to both normal-strength and high-strength concrete.

Filter by Year

2011 2025


Filter By Issues
All Issue Vol 14, No 1 (2025): Volume 14 Nomor 1 Mei 2025 Vol 13, No 2 (2024): Volume 13 Nomor 2 November 2024 Vol 13, No 1 (2024): Volume 13 Nomor 1 Mei 2024 Vol 12, No 2 (2023): Volume 12 Nomor 2 November 2023 Vol 12, No 1 (2023): Volume 12 Nomor 1 Mei 2023 Vol 11, No 2 (2022): Volume 11 Nomor 2 November 2022 Vol 11, No 1 (2022): Volume 11 Nomor 1 Mei 2022 Vol 10, No 2 (2021): Volume 10 Nomor 2 November 2021 Vol 10, No 1 (2021): Volume 10 Nomor 1 Mei 2021 Vol 9, No 2 (2020): Volume 9, Nomor 2, November 2020 Vol 9, No 1 (2020): Volume 9 Nomor 1 Mei 2020 Vol 8, No 2 (2019): Volume 8, Nomor 2, November 2019 Vol 8, No 1 (2019): Volume 8, Nomor 1, Mei 2019 Vol 7, No 2 (2018): Volume 7, Nomor 2, November 2018 Vol 7, No 1 (2018): Volume 7, Nomor 1, Mei 2018 Vol 1, No 4 (2018): Volume 1 Special Issue, Nomor 4, Februari 2018 Vol 1, No 3 (2018): Volume 1 Special Issue, Nomor 3, Januari 2018 Vol 6, No 3 (2017): Volume 6, Nomor 3, Mei 2017 Vol 6, No 2 (2017): Volume 6, Nomor 2, Januari 2017 Vol 1, No 2 (2017): Volume 1 Special Issue, Nomor 2, Desember 2017 Vol 1, No 1 (2017): Volume 1 Special Issue, Nomor 1, September 2017 Vol 6, No 1 (2016): Volume 6, Nomor 1, September 2016 Vol 5, No 3 (2016): Volume 5, Nomor 3, Mei 2016 Vol 5, No 2 (2016): Volume 5, Nomor 2, Januari 2016 Vol 4, No 3 (2015): Volume 4, Nomor 3, Mei 2015 Vol 3, No 2 (2014): Volume 3, Nomor 2, Januari 2014 Vol 3, No 1 (2013): Jurnal Teknik Sipil Volume 3, Nomor 1, September 2013 Vol 2, No 2 (2013): Volume 2, Nomor 2, januari 2013 Vol 2, No 3 (2013) Vol 2, No 1 (2012): Volume 2, Nomor 1, September 2012 Vol 1, No 3 (2012): Volume 1, Nomor 2, Mei 2012 Vol 1, No 2 (2012): Volume 1, Nomor 2, Januari 2012 Vol 1, No 1 (2011): Volume 1, Nomor 1, September 2011 More Issue