Claim Missing Document
Check
Articles

Eksperimen Pengujian Optimizer dan Fungsi Aktivasi Pada Code Clone Detection dengan Pemanfaatan Deep Neural Network (DNN) Errissya Rasywir; Yovi Pratama; Fachruddin Fachruddin
Building of Informatics, Technology and Science (BITS) Vol 4 No 2 (2022): September 2022
Publisher : Forum Kerjasama Pendidikan Tinggi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bits.v4i2.1776

Abstract

The problem of similarity (similarity) of program code can be one solution to the plagiarism detection approach. Plagiarism raises a form of action and consequences of plagiarism itself if the source used is not open source. Plagiarism is an act of deception of the work of others without the knowledge of the original author, which violates a Copyright and Moral Rights. With the increasing amount of data and data complexity, deep learning provides solutions for predictive analytics, with increased processing capabilities and optimal processor utilization. Deep learning shows success and improves the classification model in this field. On the other hand, clone detection code with massive, varied and high-speed data volumes requires feature extraction. With the potential of deep learning to extract better features, deep learning techniques are suitable for code clone detection. For this reason, it is necessary to develop a clone detection code that can process data from a programming language by utilizing deep learning. Based on the results of experiments conducted on 100 PHP program code data files, experimented with several types of activation function and optimizer methods. The average value of the resulting accuracy is good. With a variety of activation functions that we use such as Relu, Linear, Sigmoid, Softmax, Tanh, Elu, Selu, Softplus, Softsign, hard, and sigmoid, as well as variations of the optimizer used are Adagrad, RMSProp, SGD, Adadelta, Adam, Adamax and Nadam , the best attribute selection is in the Selu function and the RMSProp optimizer. The number of epochs used is 1000, the number of neurons per layer is 500 and the best number of hidden layers is 10, the average accuracy is 0.900
Penerapan K-Means Untuk Clustering Kondisi Gizi Balita Pada Posyandu Candra Adi Rahmat; Hilda Permatasari; Errissya Rasywir; Yovi Pratama
JURNAL MEDIA INFORMATIKA BUDIDARMA Vol 7, No 1 (2023): Januari 2023
Publisher : Universitas Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/mib.v7i1.5142

Abstract

Malnutrition in children is a major public health problem in developing countries, including Indonesia. National data show that 36.8% of children under five years of age (toddlers) are stunted (short and very short, measured by height for age). To be able to know the nutritional condition of the toddler, can use analysis and a calculation method. In this study, the authors utilize an analysis and calculation of data, namely data mining. One of the techniques in data mining is clustering. K-Means Clustering is one of the algorithms in the Clustering technique in data mining. In this study the authors used as many as 20 data on toddlers. From the 20 data on toddlers, the authors determined the cluster center randomly as much as 3 data and resulted that, 4 toddlers were malnourished, 7 toddlers were well nourished, and 9 toddlers were obese.
Penilaian Tingkat Pengetahuan Siswa Dalam Sistem e-Learning Menggunakan Machine Learning Yovi Pratama; Yuga Pramudya; Evan Albert; Mumtaz Ilham Syafatullah; Rio Ferdinand; Verwin Juniansyah; Errissya Rasywir
Bulletin of Computer Science Research Vol. 3 No. 1 (2022): Desember 2022
Publisher : Forum Kerjasama Pendidikan Tinggi (FKPT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bulletincsr.v3i1.202

Abstract

Data clustering provides an overview of the grouping of data through classification so that the groups have levels that have the same category. Cluster classification is carried out on agricultural data in Jambi Province with agricultural production groups including rice, rubber, palm oil, and coffee in the period 2021 for 11 (eleven) cities/districts including Jambi City, East Tanjung Jabung Regency, Sungai Full City, Kerinci Regency, Muaro Jambi Regency, West Tanjung Jabung Regency, Merangin Regency, Sarolangun Regency, Batanghari Regency, Tebo Regency, and Bungo Regency. The purpose of the cluster is used for allocations related to the budget, land, and support that can be used both to increase the amount of production and evaluation related to agriculture, especially at the Jambi Province level. So that the clustering carried out using the Weka application is 4 clusters, the result is that the cluster process stops at the 2nd iteration, the output information that occupies cluster 0 is 3 cities/districts, cluster 1 has 1 city/regency, cluster 2 has 2 cities/districts, and cluster 3 there are 5 cities/districts, with a total attribute of 11 (eleven) city/district data. Based on experiments on manual clustering, it can be concluded that the equations that can be seen from the output results using Weka and manual calculations are the same as doing two data iterations and with the same data group results.
Klasifikasi Penyakit Gagal Jantung Menggunakan Algoritma K-Nearest Neighbor Yovi Pratama; Anton Prayitno; Defrin Azrian; Nur Aini; Yoga Rizki; Errissya Rasywir
Bulletin of Computer Science Research Vol. 3 No. 1 (2022): Desember 2022
Publisher : Forum Kerjasama Pendidikan Tinggi (FKPT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bulletincsr.v3i1.203

Abstract

Cardiovascular diseases (CVDs) are the number 1 cause of death globally, taking an estimated 17.9 million lives each year, which accounts for 31% of all deaths worldwide. Four out of 5CVD deaths are due to heart attacks and strokes, and one-third of these deaths occur prematurely in people under 70 years of age. Heart failure is a common event caused by CVDs and this dataset contains 11 features that can be used to predict a possible heart disease. People with cardiovascular disease or who are at high cardiovascular risk (due to the presence of one or more risk factors such as hypertension, diabetes, hyperlipidaemia or already established disease) need early detection and management wherein a machine learning model can be of great help.
Klasterisasi Data Pertanian di Tingkat Provinsi Jambi Tahun 2021 Menggunakan Algoritma K-Means Yovi Pratama; Yuga Pramudya; Evan Albert; Mumtaz Ilham S; Rio Ferdinand; Verwin Juniansyah; Errissya Rasywir
Bulletin of Computer Science Research Vol. 3 No. 1 (2022): Desember 2022
Publisher : Forum Kerjasama Pendidikan Tinggi (FKPT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bulletincsr.v3i1.205

Abstract

Data clustering provides an overview of the grouping of data through classification so that the groups have levels that have the same category. Cluster classification is carried out on agricultural data in Jambi Province with agricultural production groups including rice, rubber, palm oil, and coffee in the period 2021 for 11 (eleven) cities/districts including Jambi City, East Tanjung Jabung Regency, Sungai Full City, Kerinci Regency , Muaro Jambi Regency, West Tanjung Jabung Regency, Merangin Regency, Sarolangun Regency, Batanghari Regency, Tebo Regency, and Bungo Regency. The purpose of the cluster is used for allocations related to the budget, land, and support that can be used both to increase the amount of production and evaluation related to agriculture, especially at the Jambi Province level. So that the clustering carried out using the Weka application is 4 clusters, the result is that the cluster process stops at the 2nd iteration, the output information that occupies cluster 0 is 3 cities/districts, cluster 1 has 1 city/regency, cluster 2 has 2 cities/districts, and cluster 3 there are 5 cities/districts, with a total attribute of 11 (eleven) city/district data. Based on experiments on manual clustering, it can be concluded that the equations that can be seen from the output results using Weka and manual calculations are the same as doing two data iterations and with the same data group results.
Analisis Kepuasan Pengguna Aplikasi TIX ID Di Kota Jambi Menggunakan Metode EUCS Fradea Novi Ramadhayanti; Mulyadi; Errissya Rasywir
Jurnal Ilmiah Media Sisfo Vol 17 No 1 (2023): Jurnal Ilmiah Media Sisfo
Publisher : LPPM Universitas Dinamika Bangsa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33998/mediasisfo.2023.17.1.792

Abstract

Penelitian ini bertujuan untuk mengetahui tingkat kepuasan masyarakat di Kota Jambi terhadap pengguna aplikasi TIX ID di kota Jambi, menggunakan metode End User Computing Satisfaction (EUCS) Metode EUCS mempunyai 5 variabel yaitu : Content (isi),  Accuracy (keakuratan), Format (bentuk), Ease Of Use (kemudahan pengguna), Timelines (ketepatan), User satisfaction (kepuasaan pengguna). Penelitian ini menggunakan data hasil kuesioner dari 385 responden. Data diolah menggunakan metode Structural Equation Model (SEM) melalui software SmartPLS . Hasil penelitian menunjukkan bahwa, terdapat 3 hipotesis yang memberi penggaruh signifikan antar variabel, variabel accuracy berpengaruh positif (3,479) dan signifikan (0.001), Timelines berpengaruh positif (2,575) signifikan (0.010) Format berpengaruh posistif (5,371) dan signifikan (0,000). sedangkan 2 hipotesis tidak memberikan pengaruh yang signifikan Content berpengaruh negatif (1,504) dan signifikan (0,133), dan Ease of use berpengaruh negatif (0,024) dan signifikan (0,010), Sehingga dapat disimpulkan bahwa aplikasi TIX ID tidak cukup baik dalam memenuhi harapan pengguna
PERANCANGAN SISTEM PENDUKUNG KEPUTUSAN PENILAIAN KINERJA KARYAWAN (STUDI KASUS : PT. MANDIRI PASTI JAYA JAMBI) Ade Saputra; Errissya Rasywir; Eni Rohaini
Jurnal Informatika Dan Rekayasa Komputer(JAKAKOM) Vol 1 No 2 (2021): JAKAKOM Vol 1 No 2 September 2021
Publisher : LPPM Universitas Dinamika Bangsa

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (914.662 KB) | DOI: 10.33998/jakakom.2021.1.2.10

Abstract

ABSTRACT Mandiri Pasti Jaya Jambi is one of company which has been located in Jambi where provision of bonus still be selected subjective by owner desire. So always get problem like social jealousy between employment and decrease performance of employment. Because of that, this research have purpose to give solution to that happening problems with offer a decision support system of evaluating the performance of an employee to provision of bonus by using PHP programming language and DBMS MySQL. Writer make development system with waterfall method and using model approach system unified model language with use case diagram, activity diagram, class diagram and flowchart diagram. New system make some output like show employees data, admin data, assessment criteria data, employees assessment data, and result of reckoning to granting bonus employees with MAUT who contributed to company can increase performance and spirit employees Keywords : System, Decision, Performance, Employees ABSTRAK Mandiri Pasti Jaya Jambi merupakan salah satu perusahaan yang berlokasi di daerah Jambi dengan pemberian bonus karyawan yang masih dipilih secara subjektif berdasarkan keinginan dari pemilik perusahaan. Sehingga terjadi permasalahan yaitu terjadi kecemburuan sosial antar karyawan dan menurunnya kinerja dari karyawan. Oleh karena itu, penelitian ini bertujuan memberikan solusi untuk permasalahan yang terjadi dengan menawarkan sistem pendukung keputusan penilaian kinerja karyawan untuk pemberian bonus menggunakan bahasa pemograman PHP dan DBMS MySQL. Penulis melakukan pengembangan sistem dengan metode waterfall dan menggunakan pendekatan model sistem unified model language menggunakan usecase diagram, activity diagram, class diagram dan flowchart diagram. Sistem baru menghasilkan output yang dapat menampilkan data karyawan, data admin, data kriteria, data sub kriteria, data penilaian karyawan dan hasil perhitungan pemberian bonus karyawan dengan metode MAUT yang memberikan kontribusi kepada perusahan dapat meningkatkan kinerja dan semangat karyawan. Kata Kunci : Sistem, Keputusan, Kinerja, Karyawan
Implementasi Data Mining Untuk Menentukan Persediaan Stok Obat Di Apotek K-24 Menggunakan Metode K-Means Clustering desy ayu ramadhanty; Renita Syafitri; Errissya Rasywir; Despita Meisak
Jurnal Informatika Dan Rekayasa Komputer(JAKAKOM) Vol 2 No 1 (2022): JAKAKOM Vol 2 No 1 April 2022
Publisher : LPPM Universitas Dinamika Bangsa

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (390.642 KB) | DOI: 10.33998/jakakom.2022.2.1.31

Abstract

Pengolahan data mining telah berkembang sangat pesat, beradaptasi dengan segala bentuk analisis data. Pada dasarnya, data mining dapat menganalisis data untuk menggunakan teknik perangkat lunak untuk menemukan pola dalam kumpulan data tersembunyi. Manajemen persediaan yang tinggi dan tidak ekonomis karena beberapa produk mungkin memiliki ruang dan kelebihan. Hal ini tentu sangat merugikan pelaku usaha seperti tempat kesehatan Apotek K-24. Metode K-Means sudah menjadi salah satu teknik data mining yang digunakan untuk merancang strategi persediaan atau buku pesanan yang efektif menggunakan data transaksi penjualan bisnis. Tujuan penelitian dari penelitian ini adalah untuk menerapkan algoritma KMeans, dan data transaksi obat dari Apotek K-24 di berikan sebagai contoh tipikal. Hasil analisis untuk penelitian ini menggunakan 20 buah data.
Penerapan Data Mining Algoritma Naive Bayes Clasifier Untuk Mengetahui Minat Beli Pelanggan Terhadap Kartu Internet Telkomsel ( Ricks Cell simpang candra) Arya Atmanegara; Rts CiptaNingsi; Errissya Rasywir; Despita Meisak
Jurnal Informatika Dan Rekayasa Komputer(JAKAKOM) Vol 2 No 1 (2022): JAKAKOM Vol 2 No 1 April 2022
Publisher : LPPM Universitas Dinamika Bangsa

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (313.794 KB) | DOI: 10.33998/jakakom.2022.2.1.33

Abstract

Persaingan yang terjadi dalam dunia bisnis memaksa para pelakunya untuk selalu memikirkan strategi-strategi dan terobosan yang dapat menjamin kelangsungan dari bisnis yang dijalankannya. Hal ini akan memunculkan persaingan antar sesama provider kartu terhadap kartu internet. Para provider kartu internet berlomba-lomba menarik minat pelanggan dengan berbagai macam strategi pemasaran agar tidak kalah saing dan tetap eksis. Dan perusahaan ingin selalu meluncurkan kartu internet terbaru tanpa memikirkan kartu internet tersebut akan laku atau tidak dipasaran.Konsep data mining akan memudahkan cara menyelesaikan masalah yang terjadi di Ricks Cell Simpang Candra. Maka, metode klasifikasi mampu menemukan model yang membedakan konsep atau kelas data, dengan tujuan untuk dapat memperkirakan kelas dari suatu objek yang labelnya tidak diketahui. Oleh sebab itu, algoritma naive bayes dapat memprediksi peluang di masa depan berdasarkan pengalaman dimasa sebelumnya. Hasil dari penelitian ini agar dapat memprediksi atau memperkirakan laku atau tidak kartu internet yang baru, sehingga pemilik usaha dapat mengambil keputusan dan meningkatkan strategi pemasaran. Kata Kunci : data mining, kartu internet, klasifikasi, algoritma naïve bayes
Implementasi Data Mining Untuk Menentuksn Persediaan Stok Barang Di Mini Market Menggunakan Metode K-Means Clustering Hani Prastiwi; Jeny Pricilia; Errissya Rasywir
Jurnal Informatika Dan Rekayasa Komputer(JAKAKOM) Vol 2 No 1 (2022): JAKAKOM Vol 2 No 1 April 2022
Publisher : LPPM Universitas Dinamika Bangsa

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (422.64 KB) | DOI: 10.33998/jakakom.2022.2.1.34

Abstract

[1]Abstrak- Data mining adalah metode untuk menemukan pola tertentu dari kumpulan data yang berjumlah besar. Meskipun banyak dipelajari pada bidang ilmu komputer dan statistika, data mining adalah metode yang bisa diterapkan dan mempermudah pekerjaan di bidang lainnya juga. Namun sebenarnya apa itu data mining? Data mining adalah metode dalam ilmu komputer yang biasa digunakan dalam proses pencarian knowledge. Tahapan di dalamnya berguna untuk mencari pola-pola tertentu dari data yang ada pada database. Biasanya, metode ini banyak ditemukan pada bidang machine learning dan statistika. Metode K-Means sudah menjadi salah satu teknik data mining yang digunakan untuk merancang strategi persediaan barang yang efektif menggunakan data transaksi penjualan. Tujuan dari penelitian ini adalah untuk menerap kan algoritma K-Means dan data transaksi penjualan dari MM Glory sebagai contoh tipikal. Hasil analisis untuk penelitian ini menggunakan dua puluh (20) buah data.
Co-Authors Abdul Haris Abdul Harris Abdurrahman Abidin, Dodo Zaenal Abrani, Sauti Ade Saputra Agus Siswanto Akwan Sunoto Anggraini, Dila Riski Anita Anita Nurjanah Annisa putri Anton Prayitno Arya Atmanegara Aryani, Lies asih asmarani Athalina, Ghita Bayu saputra Beni Irawan Betantiyo Prayatna Borroek, Maria Rosario Briyan Chairullah Candra Adi Rahmat Carenina, Babel Tio Clara Zuliani Syahputri Defrin Azrian Desi Kisbianty, Desi Despita Meisak desy ayu ramadhanty Dimas Pratama Dodo Zaenal Abidin Dwi Rosa Indah Elsa Charolina L Siantar Evan Albert Fachruddin Fachruddin Fachruddin Fachruddin Fachruddin Fachruddin Fachruddin Fachruddin, Fachruddin farchan akbar Feranika, Ayu Fernando Fernando fiqri ansyah Fradea Novi Ramadhayanti GILLIANI, WENNY Hani Prastiwi Hartiwi, Yessi Hendrawan Hendrawan Hendrawan Hendrawan Hendrawan Hendrawan Hilda Permatasari Hussaein, Ahmad Ilham Adriansyah Ilham Fahrozi ilham permana Imelda Yose Iqbal Pradibya Irawan Irawan Irawan Irawan Irawan, Beni Istoningtyas, Marrylinteri Jasmir Jasmir Jeny Pricilia Johari, Riyan Jopi Mariyanto khalil gibran ahmad Kholil Ikhsan Lazuardi Yudha Pradana Li Sensia Rahmawati Lies Aryani Luthfi Rifky M.Rizky Wijaya Macharani Raschintasofi Maliyatul Khasanah Maria Rosario Borroek Marrylinteri Istoningtyas Marrylinteri Istoningtyas Marrylinteri Istoningtyas Mayang Ruza Mgs Afriyan Firdaus Migi Sulistiono Muhammad David Adrilyan Muhammad Diemas Mahendra Muhammad Ismail Muhammad Ismail Muhammad Riza Pahlevi Muhammad Satria Mubin Muhammad Wahyu Prayogi Mulyadi Mulyadi Mumtaz Ilham S Mumtaz Ilham Syafatullah Muttaqin Nabila Khumairo Najmul Laila Nanda Ghina Nasrul Ahlunaza Nasutioni, Wahyudi Nilu Widyawati Nungky Septia Kurnicova Nur Aini Nur Azmi Nurhadi Nurhadi Nurul Aulia OPHELIA, CHANDY Pahlevi, M. Riza Pahlevi, M.Riza Pareza Alam Jusia Pareza Alam Jusia Pareza Alam Jusia, Pareza Alam Putri Ratna Sari, Putri Ratna Rani Oktavia, Feby Renita Syafitri Reza Pahlevi Rio Ferdinand ROBY SETIAWAN Rofi'i, Imam Rohaini, Eni Rosario B, Maria Rosario, Maria Rts CiptaNingsi Rudolf Sinaga Sandi Pramadi Saparudin, Saparudin Satria Oldie Versileno Sri Wahyuni Nainggolan Sulistia Ramadhani Suyanti Tasya Basalia Sihombing Tedy Hardiyanto Tondy Maulana Tambunan Verwin Juniansyah virginia casanova andiko andiko Wahid Hasyim Yaasin, Muhammad Yessi Hartiwi Yessi Hartiwi Yoga Rizki Yovi Pratama Yuga Pramudya Zahlan Nugraha