Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Journal of Electrical Engineering and Computer (JEECOM)

Implementasi AI Chatbot Sebagai Support Assistant Website Universitas Nurul Jadid Menggunakan Algoritma Long Short-Term Memory (LSTM) M. Erfan Rianto; Maulidiansyah Maulidiansyah; Abu Tholib
Journal of Electrical Engineering and Computer (JEECOM) Vol 6, No 1 (2024)
Publisher : Universitas Nurul Jadid

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33650/jeecom.v6i1.8556

Abstract

Perkembangan teknologi semakin pesat, menciptakan perubahan besar dalam berbagai aspek kehidupan termasuk pada sektor pendidikan. Universitas Nurul Jadid merupakan lembaga pendidikan yang perlu mengadaptasi teknologi terkini untuk efisiensi dan pelayanan untuk menjawab peningkatan volome pertanyaan dan informasi yang dibutuhkan masyarakat/orangtua sebelum mendaftarkan putra-putrinya kuliah di Universitas Nurul Jadid. Chatbot merupakan bagian dari Natural Languange Processing (NLP) berbasis Artificial Intelegent (AI) yang berfungsi melakukan percakapan dengan pengguna melalui teks atau ucapan yang memberikan layanan cepat dan akurat sepanjang waktu. Long Short-Term Memory (LSTM) yaitu algoritma deep learning untuk memprediksi serta klasifikasi data teks. Data penelitian terdiri dari tag, pattern dan response yang diperoleh secara manual dari referensi website Universitas Nurul Jadid kemudian di preprocessing guna membuat model. Bagian utama pada model chatbot ini yaitu lapisan embedding yang memberikan nilai vektor untuk setiap kata dalam data teks yang telah dimasukkan. Hasil training model menghasilkan akurasi sebesar 99.32% dan loss sebesar 12.57% Ini menadakan model sudah bagus dan tidak terjadi overfitting atau underfitting sehingga model layak untuk dilakukan pengujian dan deployment. Hasil ini mendukung penggunaan chatbot LSTM sebagai asisten virtual untuk membantu masyarakat/calon mahasiswa/mahasiswa mengakses informasi.
Analisis Sentimen Terhadap Ulasan Aplikasi Shopee di Google Play Store Menggunakan Metode TF-IDF dan Long Short-Term Memory) Musfiroh Musfiroh; Abu Tholib; Zainal Arifin
Journal of Electrical Engineering and Computer (JEECOM) Vol 6, No 2 (2024)
Publisher : Universitas Nurul Jadid

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33650/jeecom.v6i2.8713

Abstract

Pengunjung Shopee semakin meningkat dari tahun 2022 hingga 2023. Karena peningkatan itu, semakin banyak pengguna yang berkomentar negatif atau positif. Maka, mengetahui sentimen pengguna pada aplikasi Shopee dapat mengetahui perilaku pelanggan dan meningkatkan penjualan. Penelitian ini menggunakan metode TF-IDF dan algoritma LSTM. Adapun tahapan penelitian seperti scrapping data yang menggunakan ulasan pengguna aplikasi Shopee di Google Play Store sebanyak 3565 data. Lalu data dikategorikan menjadi tiga kelas: positif, netral, dan negatif. Proses preprocessing meliputi Tokenization, Normalization, Stopword, dan Stemming. Selanjutnya dilakukan proses train data dan data test sebesar 8:2. Lalu melakukan vektorisasi dengan TF-IDF, melatih model dengan penggabungan TF-IDF dan LSTM (Long Short-Term Memory), serta menggunakan metrics untuk mengevaluasi model dan visualisasi menggunakan word cloud. menghasilkan akurasi sebesar 83% dengan nilai loss (kerugian) sebesar 0.1385. Model memiliki kemampuan cukup baik dalam memprediksi kelas negatif dan positif tetapi kurang efektif untuk kelas netral karena data yang kurang seimbang.