Claim Missing Document
Check
Articles

Found 30 Documents
Search

DECISION TREE C4.5 ALGORITHM FOR TUITION AID GRANT PROGRAM CLASSIFICATION (CASE STUDY: DEPARTMENT OF INFORMATION SYSTEM, UNIVERSITAS TEKNOKRAT INDONESIA) Ahmad Ari Aldino; Heni Sulistiani
EDUTIC Vol 7, No 1 (2020): NOVEMBER 2020
Publisher : Universitas Trunojoyo Madura

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (747.889 KB) | DOI: 10.21107/edutic.v7i1.8849

Abstract

In pandemic era, almost everyone struggles for their life. College students are such example. They have difficulty in paying tuition fee to continue their study. Based on this problematic situation, Universitas Teknokrat Indonesia grants the students who have good academic performance with tuition fee aid program. Many variables used for determining the grant made it hard to make a decision in a short time or even takes very long time. To make it easier for management to decide who is the right student to get grant, it needs classification model. The purpose of this study is the classification of grant recipients by using decision tree C4.5 algorithm. That can determine whether a potential student can be accepted as an awardee or not. Then, the results of the classification are validated with ten-fold cross validation with an accuracy, precision and recall with the score of 87 % for all part. It means the model perform quite well to be implemented into system.
The Alternative of Sensor Placement in Multi-Story Buildings through the Metric Dimension Approach: A Representation of Generalized Petersen Graphs Asmiati; Akmal Junaidi; Ahmad Ari Aldino; Arif Munandar
ComTech: Computer, Mathematics and Engineering Applications Vol. 13 No. 2 (2022): ComTech
Publisher : Bina Nusantara University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21512/comtech.v13i2.7268

Abstract

In a public facility or private office where many people can get together, a fire detection device is a mandatory tool as an emergency alarm in the facility. However, the expense of the installation of the device is a troublesome matter. So, optimization is needed to minimize the number of these devices. The way to implement is to select the appropriate position to place the devices in public facilities. The research discussed the placement of the sensors in multi-story buildings. The multi-story buildings could be represented as cube composition graphs with the number of rooms, and the connectivity between the floor and its rooms was equal. The concept of this multi-story building was modeled into a generalized Petersen graph where a vertex represented a room, and an edge was the connectivity of rooms. The basis obtained on that metric dimension was represented as a sensor placed on the building. Then, the optimization of device placement was seen as determining the metric dimensions of the Petersen graph. In the research, the alternative sensor placements were computed using the graph metric dimension approach implemented in Python. The research successfully implements the metric dimension of  to  using Python code to obtain the alternative of its basis. A basic alternative indicates the location of the device placement like fire detectors, network access points, or other sensors inside a building.
STRATEGI PENINGKATAN KOMPETENSI SISWA SMK ISLAM ADILUWIH UNTUK MENGHADAPI PERSAINGAN GLOBAL Larasati Ahluwalia; Defia Riski Anggarini; Ahmad Ari Aldino
Journal of Social Sciences and Technology for Community Service (JSSTCS) Vol 3, No 2 (2022): Volume 3, Nomor 2, 2022
Publisher : Universitas Teknokrat Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33365/jsstcs.v3i2.2210

Abstract

Generasi Z sangat berpengaruh pada perkembangan bangsa di masa depan. Generasi Z memiliki rentang usia 10 sampai 25 tahun, sehingga dapat dikatakan generasi ini mayoritas berada di usia sekolah menengah.Generasi Z sangat berpengaruh pada perkembangan bangsa di masa depan. Generasi Z memiliki rentang usia 10 sampai 25 tahun, sehingga dapat dikatakan generasi ini mayoritas berada di usia sekolah menengah. Tujuan dari kegiatan ini adalah memberikan pengetahuan yang akan meningkatkan kompetensi siswa SMK Islam Adiluwih. Hasil dari kegiatan ini, terdapat peingkatan kompetensi siswa SMA Islam Adiluwih dalam bidang literasi keuangan, pembuatan cv dan pengolahan big data untuk mengambil keputusan.
PENDAMPINGAN PEMBELAJARAN PUBLIC SPEAKING BAGI SISWA-SISWI MAN 1 LAMPUNG TENGAH Intan Hamzah; Achmad Yudi Wahyudin; Lulud Oktaviani; Ahmad Ari Aldino; Muhammad Alfathaan; Abraham Julius
Jurnal WIDYA LAKSMI (Jurnal Pengabdian Kepada Masyarakat) Vol. 2 No. 2 (2022): Jurnal WIDYA LAKSMI (Jurnal Pengabdian Kepada Masyarakat)
Publisher : Yayasan Lavandaia Dharma Bali

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Keterampilan berbicara di depan umum atau public speaking masih belum sepenuhnya dimiliki oleh para siswa. Keengganan tampil di depan publik ini akibat rendahnya rasa kepercayaan diri, dan minimnya penguasaan teknik berbicara di depan umum. Ketidakmampuan ini menyebabkan komunikasi yang seharusnya efektif, menjadi tergradasi. Bahkan seringkali terjadi kesalahpahaman komunikasi di depan publik. Kesalahpahaman ini didokumentasikan dan tersebar di dunia maya. Para siswa pun menjadi rentan dengan tindakan perundungan atau bullying di dunia maya. Kegiatan Pengabdian kepada Masyarakat yang dilakukan di MAN 1 Lampung Tengah bertujuan untuk memberikan pendampingan kepada para siswa di sekolah tersebut untuk memiliki kemampuan public speaking yang baik. Terdapat empat sesi dalam kegiatan pengabdian ini, yaitu: 1) penyampaian materi mengenai Public speaking, 2) tips and trik, serta best practice dalam Public speaking, 3) performance dari siswa-siswi MAN 1 Lampung Tengah dan mahasiswa Universitas Teknokrat Indonesia. Hasil kegiatan ini menunjukan bahwa para siswa yang pada awalnya memiliki kemampuan public speaking yang rendah mengalami peningkatan kemampuan public speaking mengikuti kegiatan pendampingan pembelajaran Public Speaking dalam Bahasa Inggris. Hal ini ditunjukan dengan respon positif siswa selama mengikuti kegiatan dan hasil kuesioner terkait persepsi siswa terhadap kegiatan. Kegiatan serupa sebagai kelanjutan proses pembelajaran juga diharapkan guna tercapai tujuan pembelajaran Bahasa Inggris secara menyeluruh.
TERM FREQUENCY-INVERSE DOCUMENT FREQUENCY SUPPORT VECTOR MACHINE UNTUK ANALISIS SENTIMEN OPINI MASYARAKAT TERHADAP TEKANAN MENTAL PADA MEDIA SOSIAL TWITTER Dhira Atika; Styawati Styawati; Ahmad Ari Aldino
Jurnal Teknologi dan Sistem Informasi Vol 3, No 4 (2022): Volume 3 No. 4 December 2022
Publisher : Universitas Teknokrat Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33365/jtsi.v3i4.2054

Abstract

Twitter adalah media informasi yang tersedia untuk semua pengguna Internet. Indonesia memiliki 19,5 juta pengguna Twitter dari 500 juta di seluruh dunia dan terus bertambah dari waktu ke waktu. Penggunaan Twitter oleh pemerintah dipergunakan dalma melakukan kebijakan pembatasan sosial berskala besar (PSBB) berkaitan dengan sektor perjalanan, sekolah dan usaha. Dalam ilmu psikologi tekanan mental dapat terjadi disebabkan oleh beberapa faktor bisa dari faktor biologis, genetik atau lingkungan. Tekanan mental yang dirasakan mulai dari khawatir terhadap kesehatan, informasi hoax dan tekanan mental yang terkait dengan penghasilan dan pendapatan. tweet Twitter tentang tekanan mental menghasilkan banyak pendapat masyarakat. Komentar tweet pengguna media sosial Twitter akan dapat dijadikan data penelitian. Berdasarkan tweet yang dilakukan pengguna media sosial Twitter pada penelitian ini akan mencari opini masyarakat tentang tekanan mental pengguna Twitter di Indonesia. Salah satu tujuan dari penelitian ini adalah mengetahui tingkat tekanan mental masyakarat pengguna Twitter di Indonesia dengan 2 klasifikasi yaitu terkena tekanan mental dan tidak terkena tekanan mental. Untuk memudahkan proses pengklasifikasian Data tweet Twitter dibutuhkan suatu sentimen analisis. Teknik untuk melakukan klasifikasi pada analisis sentimen diperlukan suatu algoritma dalam penelitian ini menggunakan algoritma Support Vector Machine (SVM) dengan kernel linier, yang dikombinasikan dengan fitur ekstraksi TF-IDF.  Uji validitas yang diterapkan pada penelitian ini menggunakan matrik konfusi. Penggunaan ekstraksi fitur TF-IDF dan metode Support Vector Machine (SVM) mampu melakukan nilai accuracy sebesar 99,34 % artinya bahwa nilai tersebut good classification atau klasifikasi baik. Kata Kunci: Analisis Sentimen, TF-IDF, Support Vector Machine (SVM).
Analisis Sentimen Transportasi Online Menggunakan Ekstraksi Fitur Model Word2vec Text Embedding Dan Algoritma Support Vector Machine (SVM) Emi Suryati; Styawati Styawati; Ahmad Ari Aldino
Jurnal Teknologi dan Sistem Informasi Vol 4, No 1 (2023): Volume 4 Nomor 1 Maret 2023
Publisher : Universitas Teknokrat Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33365/jtsi.v4i1.2445

Abstract

In the era of society 5.0, information technology is growing rapidly, one of which is in the field of transportation. The phenomenon of online transportation services is becoming increasingly popular among the public. With this phenomenon, many people have opinions about online transportation services, both positive and negative comments. The purpose of this study was to conduct a sentiment analysis of comments or users of online transportation service applications on gojek and grab on the Google Play Store. The stages of this research process are data collection, data labeling, data preprocessing, feature extraction and sentiment classification using the Support Vector Machine (SVM) algorithm. Data collection is done by web scraping. Dataset labeling is divided into two classes, namely positive sentiment and negative sentiment. Word2Vec Text Embedding is used as a feature extraction model to represent words in vector form. The architecture of the word2vec model used is the skip-gram model. The Support Vector Machine (SVM) algorithm is used for the data classification process to determine the level of accuracy of the data sentiment used. The results of tests carried out on the classification of sentiment analysis in online transportation applications show quite good performance results, namely for the Gojek application to get an accuracy rate of 87%, a precision of 93%, and a re-call of 84%. While the Grab application gets an accuracy rate of 82%, precision of 89%, and re-call of 83%.
Pelatihan Dan Penerapan Perpustakaan Digital di SMA N 1 Metro Kibang Ahmad Ari Aldino; Very Hendra Saputra; Dedi Darwis
Journal of Engineering and Information Technology for Community Service Vol 1, No 4 (2023): Volume 1, Issue 4, April 2023
Publisher : Universitas Teknokrat Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33365/jeit-cs.v1i4.234

Abstract

The library is one of the means of library materials that has a function as a source of information to support the learning process in schools. The use of digital libraries can facilitate services in accessing needed learning resources, besides that with a digital library the process of borrowing and returning books will be easier to monitor by the library manager. The Indonesian Technocrat University PKM Team carried out a service program at the request of the management of SMA N 1 Metro Kibang in the form of training and application of a digital library, this was because the management of SMA N 1 Metro Kibang needed access to library digitization to facilitate the library management process, both in terms of borrowing, returning and monitoring the number of learning resources available in the library of SMA N 1 Metro Kibang. This introduction and training activity were attended by librarians, teachers and students of SMA N 1 Metro Kibang. The material provided in this activity is training in the form of a basic understanding of digital libraries, features in digital library applications, data processing which includes searching, borrowing and returning books, as well as reports on data on each book's borrowing which is recapitulated every month
Peningkatan Pemasaran Produk UMKM Marning Mesuji melalui Teknologi Terbarukan Suaidah Suaidah; Ahmad Ari Aldino; Kurnia Rimadhanti Ningtyas; Lulud Oktaviani; Rido Febryansyah; Ika Septiana
Aksiologiya: Jurnal Pengabdian Kepada Masyarakat Vol 7 No 2 (2023): Mei
Publisher : Universitas Muhammadiyah Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30651/aks.v7i2.14765

Abstract

Jagung marning Mesuji merupakan usaha di bawah Usaha Mikro, Kecil dan Menengah berada pada kategori usaha mikro yang bergerak di bidang penjualan makanan ringan. Beraneka ragam cemilan ringan seperti jagung marning masih banyak diminati, tidak hanya untuk sekedar cemilan ataupun makanan selingan saat santai dirumah. Kondisi seperti ini dapat dijadikan sebagai peluang usaha untuk menekuni pembuatan makanan tradisional. Melihat keadaan tersebut, sehingga tersedia peluang bisnis yang sangat besar, yaitu bisnis usaha mendirikan usaha jagung marning. Permasalahan utama pada mitra yaitu pihak UMKM Marning Mesuji belum adanya kemasan marning menggunakan vakum dan penggunaan penyerap oksigen (oxygen absorber), kemasan yang digunakan belum menarik untuk dijual di toko ataupun supermarket, kemasan belum tersedia berbagai jenis ukuran dan branding yang belum dikenal banyak masyarakat luar karna kurangnya marketing. Metode pelaksanaan pengabdian agar tercapai solusi dan luaran yang ditawarkan dalam pelaksanaan program PKM ini, yaitu: perencanaan, pelaksanaan, monitoring dan pelaporan. Solusi yang ditawarkan oleh tim pengusul Program Kemitraan Masyarakat (PKM) kepada mitra yaitu dalam menyelesaikan masalah yaitu mengadakan Teknologi packaging vakum dan penggunaan penyerap oksigen dapat mempertahankan kualitas jagung maring yang telah dibuat, adanya kemasan yang lebih menjual dan desain yang menarik dan adanya aplikasi digital marketing masyarakat luar akan lebih mengenal UMKM Marning Mesuji.
Training on the Use of Fruit Dryer Technology for Optimizing MSME Production of Marning Mesuji Suaidah, Suaidah; Aldino, Ahmad Ari; Ningtyas, Kurnia Rimadhanti; Oktaviani, Lulud; Surahman, Ade; Sintaro, Sanriomi; Budiono, Andiswar Muhamad; Lestari, Yuni Tri
International Journal of Public Devotion Vol 6, No 1 (2023): January - July 2023
Publisher : STKIP Singkawang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26737/ijpd.v6i1.3721

Abstract

Margo Jadi Village, Mesuji Timur District, Mesuji Regency, Lampung Province is one of the Micro, Small and Medium Enterprises (MSME) groups in the category of micro businesses engaged in selling marning corn. Marning corn is a snack that is consumed after going through a simple processing. MSME Corn marning Mesuji is managed by an industrial house consisting of several houses, namely Mr. Sahid, Mrs. Lina, Mr. Sumarnak Mrs. Maryati, Mrs. Mislah and Mrs. Sudarsih which were established in 2000. Every member of the MSME marning also cooperates with each other in all matters relating to marning production. Every MSME production of Mesuji marning corn can reach 100 kg per week to be sent out of town such as Jambi city. The production of marning is carried out with inadequate tools, to dry corn which is still conventionally boiled, that is, relying on sunlight. The team provided training on automatic fruit dryer technology which can dry wet corn quickly, not affected by the weather, the water content in boiled corn will be reduced to the maximum and make the drying process more awake and organized. With MSME partners dryers can dry marning corn more hygienic and protected from dust or dirt because corn is dried in a closed room
Application of Support Vector Machine (SVM) Algorithm in Classification of Low-Cape Communities in Lampung Timur Aldino, Ahmad Ari; Saputra, Alvin; Nurkholis, Andi; Setiawansyah, Setiawansyah
Building of Informatics, Technology and Science (BITS) Vol 3 No 3 (2021): December 2021
Publisher : Forum Kerjasama Pendidikan Tinggi

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (358.539 KB) | DOI: 10.47065/bits.v3i3.1041

Abstract

Classification is a technique for grouping and categorizing specific standards as material for compiling information, making conclusions, or making decisions. This paper discusses data classification for underprivileged communities in Tanjung Inten, Purbolinggo, East Lampung using the Support Vector Machine (SVM) algorithm, then grouped into two label classes, namely the less fortunate and capable label classes. From the data that has been collected, 1154 data. The data goes through processing, scoring, labeling, and testing, producing two classes of results, namely less fortunate and capable. From the test data using the Support Vector Machine (SVM) method, the accuracy score is 97%, the precision score is 97%, the Recall score is 100%, and the F1-Score is 98%. This test resulted in a proportion of classification with the capable label is 87% and less fortunate label is 13%