Claim Missing Document
Check
Articles

Found 4 Documents
Search
Journal : JAIS (Journal of Applied Intelligent System)

Data Mining Algorithm Testing For SAND Metaverse Forecasting Indri Tri Julianto; Dede Kurniadi; Muhammad Rikza Nashrulloh; Asri Mulyani
Journal of Applied Intelligent System Vol 7, No 3 (2022): Journal of Applied Intelligent System
Publisher : Universitas Dian Nuswantoro and IndoCEISS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33633/jais.v7i3.7155

Abstract

Metaverse is a technology that allows us to buy virtual land. In the future life in the real world can be duplicated into the Metaverse to increase efficiency, effectiveness, and a world without being limited by space and time. To buy land in the Metaverse, one can be done by using SAND. SAND is a crypto asset from a game called The Sandbox which functions as a transaction tool where in that game we can buy land and build it for various purposes just like we can store our Non-Fungible Tokens there. Metaverse is a digital business that will promise in the future because it offers easy and fast transactions. This study aims to compare the exact algorithm for making predictions about the SAND cryptocurrency used to buy Metaverse land. 7 algorithms are being compared, namely Deep Learning, Linear Regression, Neural Networks, Support Vector Machines, Generalized Linear Models, Gaussian Process, and K-Nearest Neighbors. The research method used is Knowledge Discovery in Databases. The research results show that the Support Vector Machines Algorithm has the most optimal Root Means Square Error value, root_mean_squared_error: 0.022 +/- 0.062 (micro average: 0.062 +/- 0.000). Based on this comparison, the Support Vector Machines Algorithm is suitable for predicting SAND Metaverse prices.
Improvement of Data Mining Models using Forward Selection and Backward Elimination with Cryptocurrency Datasets Julianto, Indri Tri; Kurniadi, Dede; Fauziah, Fathia Alisha; Rohmanto, Ricky
Journal of Applied Intelligent System Vol. 8 No. 1 (2023): Journal of Applied Intelligent System
Publisher : Universitas Dian Nuswantoro and IndoCEISS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33633/jais.v8i1.7568

Abstract

Cryptocurrency is a digital currency not managed by a state or central bank, and transactions are peer-to-peer. Cryptocurrency is still considered a speculative asset and its price volatility is relatively high, but it is also expected to become an efficient and secure transaction tool in the future. The purpose of this study is to compare and improve the performance of the Data Mining Algorithm model using the Feature Selection-Wrapper with the Binance Coin (BNB) cryptocurrency dataset. The Feature Selection-Wrapper approach used is Forward Selection and Backward Elimination. The algorithms used are Neural Networks, Deep Learning, Support Vector Machines, and Linear Regression. The methodology used is Knowledge Discovery in Databases. The results showed that from a comparison using K-Fold Cross Validation with a value of K=10, the Neural Network Algorithm has the best Root Mean Square Error value of 10,734 +/- 10,124 (micro average: 14,580 +/- 0,000). Then after improving performance using Forward Selection and Backward Elimination in the Neural Network Algorithm, the best performance improvement results are shown by using Backward Elimination with RMSE 5,302 +/- 2,647 (micro average: 5,805 +/- 0,000). 
Opinion Mining on Chat GPT based on Twitter Users Nashrulloh, Muhammad Rikza; Julianto, Indri Tri; Muzaky, Rifky Khoerul
Journal of Applied Intelligent System Vol. 8 No. 2 (2023): Journal of Applied Intelligent System
Publisher : Universitas Dian Nuswantoro and IndoCEISS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33633/jais.v8i2.8399

Abstract

The presence of Chatbots can assist humans in their everyday lives. Chat GPT is one of the commonly used Chatbots that humans rely on to support their work, serve as an assistant, or even create artistic works or writings. The purpose of this research is to investigate opinions regarding the presence of Chat GPT. This Opinion Mining method is conducted by crawling data from Twitter, which can be categorized into three opinions: Positive, Negative, or Neutral. To calculate the accuracy level of the model created, two algorithms, Naïve Bayes and K-Nearest Neighbour, are compared. The model validation process utilizes K-Fold Cross Validation by varying the value of k (k=2, k=4, k=6, k=8, and k=10) and different sampling methods, namely Linear, Shuffled, and Stratified, to obtain optimal accuracy values. The research results indicate that the K-Nearest Neighbour Algorithm achieves the highest accuracy value of 92.40%. Based on this comparison, the K-Nearest Neighbour Algorithm is deemed suitable for modeling Opinion Mining of Chat GPT. The distribution of Twitter users' opinion percentages regarding Chat GPT is as follows: Positive 9.4%, Negative 1.4%, and Neutral 89%. Neutral opinions dominate the results of the conducted Opinion Mining.Keyword : chat GPT, opinion mining, twitter
Time Series Forecasting of Top 3 Ranking Cryptocurrencies Setiawan, Ridwan; Julianto, Indri Tri; Roji, Fikri Fahru
Journal of Applied Intelligent System Vol. 8 No. 2 (2023): Journal of Applied Intelligent System
Publisher : Universitas Dian Nuswantoro and IndoCEISS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33633/jais.v8i2.8435

Abstract

Cryptocurrency has become a phenomenon worldwide. Although not all countries have legalized it, it is considered a promising investment asset. Currently, there are three top-ranking cryptocurrencies: Bitcoin, Ethereum, and Tether. This research aims to compare the performance of five forecasting algorithms, namely Autoregressive Integrated Moving Average (ARIMA), Neural Network, Support Vector Machine, Linear Regression, and Generalized Linear Model, using the dataset of Bitcoin, Ethereum, and Tether cryptocurrencies. The research methodology employed is Knowledge Discovery In Databases (KDD). The technique involves assessing the performance based on the Root Mean Square Error (RMSE) and comparing the results to find the most optimal model performance. The research findings indicate that for Bitcoin cryptocurrency, the Neural Network algorithm produced the most optimal results with an RMSE of 9180.534. For Ethereum cryptocurrency, the Neural Network algorithm demonstrated the best performance with an RMSE value of 537.528. Furthermore, for Tether cryptocurrency, the ARIMA algorithm yielded the best performance with an RMSE value of 0.003. Keywords – bitcoin, cryptocurrency, ethereum, forecasting, tether
Co-Authors Abdullah, Angga Abdulrohman, Muhammad Haviz Ade Sutedi Ade Sutedi, Ade Aditriyana, Muhammad Rizky Agisni Nurlela, Agni Akhdan Hidayat, Fairuz Alamsyah, Restu Ardana, Alwan Arif Rahman, Rifal Arif Syamsudin, Muhammad Asri Mulyani B. Balilo Jr , Benedicto B. Balilo Jr, Benedicto Balilo Jr, Benedicto B. Burhanudin, Asep Chaerunisa, Adinda Citra Indahsari, Ajeng Dede Kurniadi Dewi Tresnawati Dikdik, Dikdik Dinata, Messy Suryani Jaya Dwi Anggara, Krisna Dzulkhomzah, Moh Rival Fajar, Sigit Sihab Fauzi Pratama, Andhika Fauziah, Fathia Alisha Fikri Fahru Roji Fiqriansyah, Agung Firdaus, Ardy Reza Ginanjar, Ahmad Gotama, Dwi Hartono, Ali Hidayat, Ramdan Rahmat Hidayat, Rangga Huwaidah, Alya Ilham Maulana Ilyasin, Yasa Tiyas Kurnia, Ahmad Hopan Leni Fitriani, Leni Lindawati Lindawati Mahesa, Restu Gusti Malik Ibrahim, Maulana Meta Regita Muhammad Ajif, Arvin Muhammad Rikza Nashrulloh Muhammad Sambas, Phadil Mulyani, Neng Cici Munparik, Riyan Hakim Mutiara, Sani Muzaky, Rifky Khoerul N, Firza Much Asrizal Nawawi, Irfan Ahmad Nurandhini, Rosa Eliza Nurdiansyah, Farhan Nurdin, Kaila Fashla Nurfauziah, Hanifah Nurhalimah, Seli Nurhaqiqi, Lisda Nursalapiah, Sopa Nurul Muttaqin, Epwan Octaviansyah, Rizqi Moch Pardiansyah, Irgi Pratama, Rizky Muhammad Rahayu, Raden Erwin Gunadhi Rahman, Jaohari Rahmawati, Deby Ricky Rohmanto Ricky Rohmanto Ridwan Ridwan Setiawan Rinda Cahyana Rinda Cahyana Rohman, Fauza Rohmanto, Ricky Sadikin, M. Fitroh Saepul Jamil, Alwis Sanusi, Aini Fauziah Putu Septian Rheno Widianto Sermana, Elsa Maharani Setiawan Putra, Achmad Dhani Sirojudin, Naufal Suryadi, Khaila Thsabita Suryani, Isma Taupik Hidayat, Taupik Tria Afini Ujang Sarifudin Yoga Handoko Agustin Yosep Septiana