p-Index From 2021 - 2026
1.907
P-Index
This Author published in this journals
All Journal International Journal of Electrical and Computer Engineering IJCCS (Indonesian Journal of Computing and Cybernetics Systems) Jurnal Ilmu Komputer dan Informasi Lontar Komputer: Jurnal Ilmiah Teknologi Informasi Jurnal Ilmu Komputer Jurnal Teknik ITS Majalah Kedokteran Bandung IPTEK The Journal for Technology and Science CAUCHY: Jurnal Matematika Murni dan Aplikasi Jurnal Buana Informatika TELKOMNIKA (Telecommunication Computing Electronics and Control) JUTI: Jurnal Ilmiah Teknologi Informasi Jurnal Ilmiah Kursor Jurnal technoscientia Jurnal Teknologi Informasi dan Ilmu Komputer Journal of ICT Research and Applications REKAYASA JPM17: Jurnal Pengabdian Masyarakat POROS TEKNIK Annual Research Seminar Register: Jurnal Ilmiah Teknologi Sistem Informasi EMITTER International Journal of Engineering Technology Jurnal Inspiration Dental Journal (Majalah Kedokteran Gigi) Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) JITTER (Jurnal Ilmiah Teknologi Informasi Terapan) Jurnal ULTIMATICS Journal of Computer Science and Informatics Engineering (J-Cosine) Systemic: Information System and Informatics Journal Specta Journal of Technology EPI International Journal of Engineering ILKOMNIKA: Journal of Computer Science and Applied Informatics Indonesian Journal of Electrical Engineering and Computer Science JURNAL TEKNOLOGI TECHNOSCIENTIA Makara Journal of Technology Sewagati Nusantara Journal of Computers and its Applications Jurnal INFOTEL
Claim Missing Document
Check
Articles

KLASIFIKASI KATEGORI DOKUMEN BERITA BERBAHASA INDONESIA DENGAN METODE KATEGORISASI MULTI-LABEL BERBASIS DOMAIN SPECIFIC ONTOLOGY Pangestu Widodo; Januar Adi Putra; Suwanto Afiadi; Agus Zainal Arifin; Darlis Herumurti
Jurnal Ilmiah Teknologi Infomasi Terapan Vol. 2 No. 2 (2016)
Publisher : Universitas Widyatama

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (634.856 KB) | DOI: 10.33197/jitter.vol2.iss2.2016.100

Abstract

[Id]Sebuah dokumen berita seringkali terkait lebih dari satu kategori, untuk itu diperlukan pemanfaatan metode kategorisasi yang tidak hanya cepat tetapi juga dapat mengelompokkan sebuah berita kedalam banyak kategori. Banyak metode yang dapat digunakan untuk mengkategorisasi dokumen berita, salah satunya adalah ontologi. Pendekatan ontologi dalam kategorisasi sebuah dokumen berita didasarkan pada kemiripan fitur yang ada di dokumen dengan fitur yang ada di ontologi. Penggunaan ontologi dalam kategorisasi yang hanya didasarkan pada kemunculan term dalam menghitung relevansi dokumen menyebabkan banyak kemunculan fitur lain yang sebenarnya sangat terkait menjadi tidak terdeteksi. Dalam? paper ini diusulkan? metode baru untuk kategorisasi dokumen berita? yang terkait dengan banyak kategori, metode ini berbasis domain specific ontology yang perhitungan relevansi dokumen terhadap ontologinya tidak hanya didasarkan pada kemunculan term tetapi juga memperhitungkan relasi antar term yang terbentuk. Uji coba dilakukan pada dokumen berita berbahasa indonesia dengan 2 kategori yaitu olahraga dan teknologi. Hasil uji coba menunjukkan nilai rata-rata akurasi yang cukup tinggi yaitu kategori olahraga adalah 93,85% sedangkan pada kategori teknologi adalah 96,32%.Kata Kunci: Dokumen berita, kategorisasi, multi-label, ontologi,? domain-spesifik.[En]A news document often related? to more than one category,? necessary for utilization? the method of categorization that is not only fast but also able to Classify a news into many categories. Many methods can be used to categorize the news documents, one of which is an ontology. Ontology approach in the categorization of a document is based on the similarity of news features in documents with features that exist in the ontology. The use of ontologies in categorization that just based on the occurance of the term in calculating the relevance of the document, led to the emergence of many other fea-tures that are actually very relevant is undetectable. This paper proposed a new method for categorizing news documents are related with many categories, the method is based on a specific domain ontology and for document relevance calculation is not only based on the occurrence of the term but also take into account the relationships between terms that are formed. Tests performed on the Indonesian language news document with? two categories: sports and technology. The trial results show the value of the average accuracy is high, that the sports category was 93,85% and the technology category is 96,32%.Keywords : News document, ?categorization, multi-label, Ontology, domain-specific.
PEMBOBOTAN KATA BERDASARKAN KLASTER PADA OPTIMISASI COVERAGE, DIVERSITY DAN COHERENCE UNTUK PERINGKASAN MULTI DOKUMEN Ryfial Azhar; Muhammad Machmud; Hanif Affandi Hartanto; Agus Zainal Arifin; Diana Purwitasari
Jurnal Ilmiah Teknologi Infomasi Terapan Vol. 2 No. 3 (2016)
Publisher : Universitas Widyatama

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (394.174 KB) | DOI: 10.33197/jitter.vol2.iss3.2016.105

Abstract

[Id]Peringkasan yang baik dapat diperoleh dengan coverage, diversity dan coherence yang optimal. Namun, terkadang sub-sub topik yang terkandug dalam dokumen tidak terekstrak dengan baik, sehingga keterwakilan setiap sub-sub topik tersebut tidak ada dalam hasil peringkasan dokumen. Pada paper ini diusulkan metode baru pembobotan kata berdasarkan klaster pada optimisasi coverage, diversity dan coherence untuk peringkasan multi-dokumen. Metode optimasi yang digunakan ialah self-adaptive differential evolution (SaDE) dengan penambahan pembobotan kata berdasarkan hasil dari pembentukan cluster dengan metode Similarity Based Histogram Clustering (SHC). Metode SHC digunakan untuk mengklaster kalimat sehingga setiap sub-topik pada dokumen bisa terwakili dalam hasil peringkasan. Metode SaDE digunakan untuk mencari solusi hasil ringkasan yang memiliki tingkat coverage, diversity, dan coherence paling tinggi. Uji coba dilakukan pada 15 topik dataset Text Analysis Conference (TAC) 2008. Hasil uji coba menunjukkan bahwa metode yang diusulkan dapat menghasilkan ringkasan skor ROUGE-1 sebesar 0.6704, ROUGE-2 sebesar 0.2051, ROUGE-L sebesar 0.6271 dan ROUGE-SU sebesar 0.3951.Kata kunci : peringkasan multi dokumen, similarity based histogram clustering, coverage, diversity, coherence[En]Good summary can be obtained with optimizing coverage, diversity, and coherence. Nevertheless, sometime sub-topics wich is contained in the document is not extracted well, so that the representation of each sub-topic is appear in docment summarizarion result. In this paper, we propose new of term weighting based on? cluster in optimizing coverage, diversity, and coherence for multi-document summarization. Optimization method which is used is self-adaptive differential evolution (SaDE) with additional term weighting based on clustering result with Similarity Based Histogram Clustering (SHC). SHC is used to cluster sentence so that every sub-topic in the document can be represented in summarization result. SaDE is used to search summarization result solution which has high coverage, diversity, and coherence level. Experiment is done on 15 topics in Text Analysis Conference (TAC) 2008 dataset. Experimental results show that this proposed method can produce summarization score? ROUGE-1 0.6704, ROUGE-2 0.2051, ROUGE-L 0.6271 and ROUGE-SU 0.3951.Keywords: multy-document summarization, similarity based histogram clustering, coverage, diversity, coherence.
Seleksi Fitur Dua Tahap Menggunakan Information Gain dan Artificial Bee Colony untuk Kategorisasi Teks Berbasis Support Vector Machine Khalid Khalid; Bagus Setya Rintyarna; Agus Zainal Arifin
Systemic: Information System and Informatics Journal Vol. 1 No. 2 (2015): Desember
Publisher : Program Studi Sistem Informasi Fakultas Sains dan Teknologi, UIN Sunan Ampel Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (357.391 KB) | DOI: 10.29080/systemic.v1i2.273

Abstract

Salah satu problem yang dihadapi dalam kategorisasi teks adalah dimensi data yang besar yang menyebabkan terjadinya inefisiensi dalam aspek waktu komputasi. Untuk mengatasi hal tersebut, salah satu hal yang bisa dilakukan adalah seleksi fitur pada tahap pre- processing. Pada penelitian ini diusulkan seleksi fitur dua tahap dengan Information Gain dan Artificial Bee Colony. Kategorisasi teks dilakukan dengan Support Vector Machine. Hasil uji coba pada Dataset Reuter21578 menunjukkan adanya peningkatan Precision sebesar rata-rata 15% dan Recall sebesar rata-rata 13% dibandingkan metode pembanding yaitu PSO-SVM.
EFISIENSI PHRASE SUFFIX TREE DENGAN SINGLE PASS CLUSTERING UNTUK PENGELOMPOKAN DOKUMEN WEB BERBAHASA INDONESIA Desmin Tuwohingide; Mika Parwita; Agus Zainal Arifin
JURNAL TEKNOLOGI TECHNOSCIENTIA Technoscientia Vol 8 No 2 Februari 2016
Publisher : Lembaga Penelitian & Pengabdian Kepada Masyarakat (LPPM), IST AKPRIND Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34151/technoscientia.v8i2.162

Abstract

The number of indonesian documents which available on internet is growing very rapidly. Automatic documents clustering shown to improving the relevant documents search results of many found documents. Suffix tree is one of documents clustering method that developed, because it is proven to increase precision. In this paper, we propose a new method to clustering indonesian web documents based on phrase efficiency in the choice process of base cluster with the combination of documents frequency and term frequency calculation on the phrase with a single pass clustering algorithm (SPC). Every phrase that is considered as the base cluster will be vectored then calculate of the term frequency and document frequency. Furthermore, the documents will be calculate their similarity based on the tf-idf weighted using the cosine similarity and documents clustering is done by using a single pass clustering algorithm. The proposed method is tested on 6 dataset with number of different document 10, 20, 30, 40, 50 and 60 documents. The experiment result show that the proposed method succeeded clustering indonesian web documents by reducing the leaf node with no derivative and produces the F-measure an average of 0.78 while STC traditional produces the F-measure an average of 0.55.This result prove that the efficiency of phrase by phrase choice on internal nodes and leaf nodes that have derivative, and a combination of term frequency and document frequency calculation on the base cluster, gives a significant impact on the process of clustering documents.
Segmentasi Multi Proyeksi pada Citra Cone Beam Computed Tomography Gigi Menggunakan Metode Level Set Fahmi Syuhada; Rarasmaya Indraswari; Agus Zainal Arifin; Dini Adni Navastara
Journal of Computer Science and Informatics Engineering (J-Cosine) Vol 5 No 2 (2021): December 2021
Publisher : Informatics Engineering Dept., Faculty of Engineering, University of Mataram

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29303/jcosine.v5i2.413

Abstract

Segmentation of dental Cone-beam computed tomography (CBCT) images based on Boundary Tracking has been widely used in recent decades. Generally, the process only uses axial projection data of CBCT where the slices image that representing the tip of the tooth object have decreased in contrast which impact to difficult to distinguish with background or other elements. In this paper we propose the multi-projection segmentation method by combining the level set segmentation result on three projections to detect the tooth object more optimally. Multiprojection is performed by decomposing CBCT data which produces three projections called axial, sagittal and coronal projections. Then, the segmentation based on the set level method is implemented on the slices image in the three projections. The results of the three projections are combined to get the final result of this method. This proposed method obtains evaluation results of accuracy, sensitivity, specificity with values of 97.18%, 88.62%, and 97.61%, respectively.
Indonesian News Classification Using Naïve Bayes and Two-Phase Feature Selection Model M. Ali Fauzi; Agus Zainal Arifin; Sonny Christiano Gosaria
Indonesian Journal of Electrical Engineering and Computer Science Vol 8, No 3: December 2017
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v8.i3.pp610-615

Abstract

Since the rise of WWW, information available online is growing rapidly. One of the example is Indonesian online news. Therefore, automatic text classification became very important task for information filtering. One of the major issue in text classification is its high dimensionality of feature space. Most of the features are irrelevant, noisy, and redundant, which may decline the accuracy of the system. Hence, feature selection is needed. Maximal Marginal Relevance for Feature Selection (MMR-FS) has been proven to be a good feature selection for text with many redundant features, but it has high computational complexity. In this paper, we propose a two-phased feature selection method. In the first phase, to lower the complexity of MMR-FS we utilize Information Gain first to reduce features. This reduced feature will be selected using MMR-FS in the second phase. The experiment result showed that our new method can reach the best accuracy by 86%. This new method could lower the complexity of MMR-FS but still retain its accuracy.
Knowledge Dictionary for Information Extraction on the Arabic Text Data Saputra, Wahyu Syaifullah Jauharis; Arifin, Agus Zainal; Yuniarti, Anny
Makara Journal of Technology Vol. 16, No. 2
Publisher : UI Scholars Hub

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Information extraction is an early stage of a process of textual data analysis. Information extraction is required to get information from textual data that can be used for process analysis, such as classification and categorization. A textual data is strongly influenced by the language. Arabic is gaining a significant attention in many studies because Arabic language is very different from others, and in contrast to other languages, tools and research on the Arabic language is still lacking. The information extracted using the knowledge dictionary is a concept of expression. A knowledge dictionary is usually constructed manually by an expert and this would take a long time and is specific to a problem only. This paper proposed a method for automatically building a knowledge dictionary. Dictionary knowledge is formed by classifying sentences having the same concept, assuming that they will have a high similarity value. The concept that has been extracted can be used as features for subsequent computational process such as classification or categorization. Dataset used in this paper was the Arabic text dataset. Extraction result was tested by using a decision tree classification engine and the highest precision value obtained was 71.0% while the highest recall value was 75.0%.
Pengukuran Kemiripan berbasis Leksikal dan Semantik untuk Perangkingan Dokumen Berbahasa Arab Syadza Anggraini; Diana Purwitasari; Agus Zainal Arifin
ILKOMNIKA: Journal of Computer Science and Applied Informatics Vol 4 No 2 (2022): Volume 4, Nomor 2, Agustus 2022
Publisher : Lembaga Penelitian dan Pengabdian Masyarakat

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28926/ilkomnika.v4i2.495

Abstract

Hasil pencarian relevan pada sistem temu kembali informasi tergantung pengukuran kemiripan antara query dan dokumen berdasarkan bobot kata query terhadap dokumen yang akan dirangking. Namun, perhitungan kemiripan menggunakan bobot kata dimungkinkan adanya lafal kata yang berbeda tetapi memiliki makna sama. Hasil dokumen pencarian teks berbahasa Arab akan dipengaruhi kemampuan pengguna yang beragam dalam memahami bahasa tersebut. Oleh karena itu diusulkan pengukuran kemiripan secara leksikal untuk mengatasi lafal kata yang beda serta juga menggunakan kemiripan secara semantik untuk mengenali kata dengan makna sama. Penggabungan perhitungan kemiripan leksikal dan semantik dilakukan berdasarkan bobot kata (secara leksikal) yang digabungkan dengan word embedding (secara semantik). Hasil dari uji coba dilakukan pada 2900 kitab berbahasa Arab Maktabah Syamilah menunjukkan keunggulan dengan rata-rata f-measure tertinggi dibandingkan metode lainnya yaitu 66.7% pada keseluruhan query, serta 65.2% dan 69% pada short query dan long query. Short query adalah frekuensi jumlah kata di dalam query yang berjumlah 1-2 kata sedangkan long query adalah frekuensi jumlah kata di dalam query yang berjumlah lebih dari 2 kata. Short query dan long query berpeluang me-retrieve dokumen yang tidak relevan. Hasil retrieve dokumen yang tidak relevan disebabkan karena rendahnya kemiripan antar kata di dalam suatu query akibat pemilihan kata yang kurang tepat. Pemilihan kata-kata query membutuhkan penguasaan pengguna yang tidak hanya mampu mengolah query dalam bahasa Arab, tetapi juga dapat memahami konteks dokumen yang akan dicari.
Feature Selection Using Hybrid Binary Grey Wolf Optimizer for Arabic Text Classification Muhammad Bahrul Subkhi; Chastine Fatichah; Agus Zainal Arifin
IPTEK The Journal for Technology and Science Vol 33, No 2 (2022)
Publisher : IPTEK, LPPM, Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j20882033.v33i2.13769

Abstract

Feature selection in Arabic text is a challenging task due to the complex and rich nature of Arabic. The feature selection requires solution quality, stability, conver- gence speed, and the ability to find the global optimal. This study proposes a feature selection method using the Hybrid Binary Gray Wolf Optimizer (HBGWO) for Ara- bic text classification. The HBGWO method combines the local search capabilities or exploratory of the BGWO and the search capabilities around the best solutions or exploits of the PSO. HBGWO method also combines SCA’s capabilities in finding global solutions. The data set used Arabic text from islambook.com, which consists of five Hadith books. The books selected five classes: Tauhid, Prayer, Zakat, Fasting, and Hajj. The results showed that the BGWO-PSO-SCA feature selection method with the fitness function search and classification method using SVM could per- form better on Arabic text classification problems. BGWO-PSO with fitness function and the classification method using SVM (C=1.0) gives a high accuracy value of 76.37% compared to without feature selection. The BGWO-PSO-SCA feature selec- tion method provides an accuracy value of 88.08%. This accuracy value is higher than the BGWO-PSO feature selection and other feature selection methods.
Pemanfaatan E-commerce dan Media Sosial Guna Meningkatkan Ekonomi dan Proses Bisnis UMKM Koppontren NURILA Bangkalan Dini Adni Navastara; Nanik Suciati; Chastine Fatichah; Handayani Tjandrasa; Agus Zainal Arifin; Zakiya Azizah Cahyaningtyas; Yulia Niza; Evelyn Sierra; Daniel Sugianto; Kevin Christian Hadinata; Salim Bin Usman; Muhammad Fikri Sunandar; Fiqey Indriati Eka Sari
Sewagati Vol 6 No 4 (2022)
Publisher : Pusat Publikasi ITS

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (861.366 KB) | DOI: 10.12962/j26139960.v6i4.135

Abstract

Usaha Mikro, Kecil, dan Menengah (UMKM) memiliki peran yang besar dalam bidang industri dan ekonomi suatu negara. Di era digital ini, pemanfaatan teknologi untuk meningkatkan produktifitas UMKM sudah marak dilakukan. Sayangnya pemanfaatan tekonologi ini belum diterapkan pada UMKM dari Koperasi Pondok Pesantren Addimyathy Nurul Iman Labang (Koppontren NURILA). Tim pengabdi berinisiatif melaksanakan pelatihan untuk meningkatkan produktifitas UMKM Koppontren NURILA. Kegiatan terbagi menjadi empat tahap yaitu persiapan, pelatihan, pendampingan, dan evaluasi. Kegiatan ini mengangkat topik tentang pemanfaatan e-commerce dan media sosial untuk peningkatan ekonomi dan proses bisnis UMKM. Pelaksanaan pelatihan dan pendampingan dilakukan secara hybrid, yaitu daring dan luring di lokasi UMKM Koppontren NURILA. Berdasarkan hasil evaluasi, peserta kegiatan merasa puas terhadap kualitas materi dengan nilai 4.35 dari skala 5.
Co-Authors - Azhari AA Sudharmawan, AA Adenuar Purnomo Adhi Nurilham Adi Guna, I Gusti Agung Socrates Afrizal Laksita Akbar Ahmad Afiif Naufal Ahmad Reza Musthafa, Ahmad Reza Ahmad Syauqi Aida Muflichah Aidila Fitri Fitri Heddyanna Akira Asano Akira Taguchi Akwila Feliciano Alhaji Sheku Sankoh, Alhaji Sheku Alif Akbar Fitrawan, Alif Akbar Alifia Puspaningrum Alqis Rausanfita Amelia Devi Putri Ariyanto Aminul Wahib Aminul Wahib Aminul Wahib Ana Tsalitsatun Ni'mah Andi Baso Kaswar Andi Baso Kaswar Anindhita Sigit Nugroho Anindita Sigit Nugroho Anny Yunairti Anny Yuniarti Anto Satriyo Nugroho Arif Fadllullah Arif Mudi Priyatno Arifin, M. Jainal Arifzan Razak Arini Rosyadi Arrie Kurniawardhani Arya Widyadhana Arya Yudhi Wijaya Bagus Satria Wiguna Bagus Setya Rintyarna Baskoro Nugroho Bilqis Amaliah Chandranegara, Didih Rizki Chastine Fatichah Christian Sri kusuma Aditya, Christian Sri kusuma Cinthia Vairra Hudiyanti Cornelius Bagus Purnama Putra Daniel Sugianto Daniel Swanjaya Darlis Herumurti Dasrit Debora Kamudi Desepta Isna Ulumi Desmin Tuwohingide Dhian Kartika Diana Purwitasari Didih Rizki Chandranegara Dika Rizky Yunianto Dimas Fanny Hebrasianto Permadi Dini Adni Navastara, Dini Adni Dinial Utami Nurul Qomariah Dwi Ari Suryaningrum Dyah S. Rahayu Eha Renwi Astuti Endang Juliastuti Erliyah Nurul Jannah, Erliyah Nurul Ery Permana Yudha Eva Firdayanti Bisono Evan Tanuwijaya Evelyn Sierra Fahmi Syuhada Fahmi Syuhada Fandy Kuncoro Adianto Fathoni, Kholid Fiqey Indriati Eka Sari Gosario, Sony Gulpi Qorik Oktagalu Pratamasunu Gus Nanang Syaifuddiin Handayani Tjandrasa Hanif Affandi Hartanto Hudan Studiawan Humaira, Fitrah Maharani Humaira, Fitrah Maharani I Guna Adi Socrates I Gusti Agung Socrates Adi Guna I Made Widiartha I Putu Gede Hendra Suputra Indra Lukmana Irna Dwi Anggraeni, Irna Dwi Ismail Eko Prayitno Rozi Januar Adi Putra Kevin Christian Hadinata Khadijah F. Hayati Khairiyyah Nur Aisyah Khairiyyah Nur Aisyah, Khairiyyah Nur Khalid Khalid Khoirul Umam Kholid Fathoni Lafnidita Farosanti Laili Cahyani Lutfiani Ratna Dewi Luthfi Atikah M. Ali Fauzi M. Jainal Arifin Mamluatul Hani’ah Maulana, Hendra Maulana, Hendra Mika Parwita Moch Zawaruddin Abdullah Moh. Zikky Moh. Zikky, Moh. Mohammad Fatoni Anggris, Mohammad Fatoni Mohammad Sonhaji Akbar Muhamad Nasir Muhammad Bahrul Subkhi Muhammad Fikri Sunandar Muhammad Imron Rosadi Muhammad Imron Rosadi Muhammad Machmud Muhammad Mirza Muttaqi Muhammad Muharrom Al Haromainy Munjiah Nur Saadah Muttaqi, Muhammad Mirza Nahya Nur Nanang Fakhrur Rozi Nanik Suciati Nina Kadaritna Nova Hadi Lestriandoko Novi Nur Putriwijaya Novrindah Alvi Hasanah Nur, Nahya Nuraisa Novia Hidayati Nursanti Novi Arisa Nursuci Putri Husain Ozzy Secio Riza Pangestu Widodo, Pangestu Pasnur Pasnur Pasnur Pasnur Puji Budi Setia Asih Putri Damayanti Putri Nur Rahayu Putu Praba Santika Rangga Kusuma Dinata Rarasmaya Indraswari Ratri Enggar Pawening Renest Danardono Resti Ludviani Rigga Widar Atmagi Riyanarto Sarno Riza, Ozzy Secio Rizka Sholikah Rizka Wakhidatus Sholikah Rizqa Raaiqa Bintana Rizqi Okta Ekoputris Rosyadi, Ahmad Wahyu Ryfial Azhar, Ryfial Safhira Maharani Safri Adam Saiful Bahri Musa Salim Bin Usman Saputra, Wahyu Syaifullah Jauharis Satrio Verdianto Satrio Verdianto Setyawan, Dimas Ari Sherly Rosa Anggraeni Siprianus Septian Manek Sonny Christiano Gosaria Sugiyanto, Sugiyanto Suprijanto Suprijanto Suwanto Afiadi Syadza Anggraini Syuhada, Fahmi Takashi Nakamoto Tegar Palyus Fiqar Tesa Eranti Putri Tio Darmawan Umi Salamah Undang Rosidin Verdianto, Satrio Waluya, Onny Kartika Wanvy Arifha Saputra Wardhana, Septiyawan R. Wawan Gunawan Wawan Gunawan Wawan Gunawan Wawan Gunawan Wijayanti Nurul Khotimah Wiwik Dyah Septiana Kurniati Yudhi Diputra Yufis Azhar Yulia Niza Yunianto, Dika R. Zainal Abidin Zakiya Azizah Cahyaningtyas