p-Index From 2021 - 2026
1.907
P-Index
This Author published in this journals
All Journal International Journal of Electrical and Computer Engineering IJCCS (Indonesian Journal of Computing and Cybernetics Systems) Jurnal Ilmu Komputer dan Informasi Lontar Komputer: Jurnal Ilmiah Teknologi Informasi Jurnal Ilmu Komputer Jurnal Teknik ITS Majalah Kedokteran Bandung IPTEK The Journal for Technology and Science CAUCHY: Jurnal Matematika Murni dan Aplikasi Jurnal Buana Informatika TELKOMNIKA (Telecommunication Computing Electronics and Control) JUTI: Jurnal Ilmiah Teknologi Informasi Jurnal Ilmiah Kursor Jurnal technoscientia Jurnal Teknologi Informasi dan Ilmu Komputer Journal of ICT Research and Applications REKAYASA JPM17: Jurnal Pengabdian Masyarakat POROS TEKNIK Annual Research Seminar Register: Jurnal Ilmiah Teknologi Sistem Informasi EMITTER International Journal of Engineering Technology Jurnal Inspiration Dental Journal (Majalah Kedokteran Gigi) Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) JITTER (Jurnal Ilmiah Teknologi Informasi Terapan) Jurnal ULTIMATICS Journal of Computer Science and Informatics Engineering (J-Cosine) Systemic: Information System and Informatics Journal Specta Journal of Technology EPI International Journal of Engineering ILKOMNIKA: Journal of Computer Science and Applied Informatics Indonesian Journal of Electrical Engineering and Computer Science JURNAL TEKNOLOGI TECHNOSCIENTIA Makara Journal of Technology Sewagati Nusantara Journal of Computers and its Applications Jurnal INFOTEL
Claim Missing Document
Check
Articles

Pemanfaatan Platform Google Classroom untuk Pembelajaran Daring di Pondok Pesantren Miftahul Ulum Al-Islamy, Bangkalan, Madura Dini Adni Navastara; Nanik Suciati; Chastine Fatichah; Diana Purwitasari; Handayani Tjandrasa; Agus Zainal Arifin; Akwila Feliciano; Yulia Niza; Rangga Kusuma Dinata; Safhira Maharani; Ahmad Syauqi; Sherly Rosa Anggraeni; Fandy Kuncoro Adianto; Zakiya Azizah Cahyaningtyas; Salim Bin Usman; Kevin Christian Hadinata
Sewagati Vol 4 No 3 (2020)
Publisher : Pusat Publikasi ITS

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (269.198 KB)

Abstract

Proses pembelajaran daring menjadi hambatan tersendiri dalam bidang pendidikan, terlebih untuk pendidikan wajib yang harus dilakukan secara bertatap muka langsung antara pengajar dan pelajar. Di luar faktor permasalahan eksternal, permasalahan internal perlu diselesaikan terlebih dahulu, yaitu media pembelajaran. Salah satu platform digital yang tersedia sebagai media pembelajaran untuk menunjang pembelajaran secara daring adalah Google Classroom. Aplikasi Google Classroom berbasis web yang berbentuk pembelajaran asynchronous atau dapat dikatakan pemberian materi ajar dilakukan secara tidak langsung. Walaupun sebuah media daring sudah tersedia, masih ada yang belum mengenal atau memahami penggunaan aplikasi Google Classroom sebagai media ajar mereka. Oleh karena itu, kami mengadakan pengabdian masyarakat berupa pelatihan tentang penggunaan aplikasi Google Classroom bagi guru-guru di Pondok Pesantren Miftahul Ulum Al-Islamy, yang berada di Bangkalan, Madura. Selain itu, tim pengabdi juga melakukan pendampingan bagi guru-guru dalam mempraktikkan penggunaan Google Classroom sesuai dengan mata pelajaran yang diajar. Berdasarkan hasil survei, sebanyak 91% dari total peserta pelatihan menyebutkan bahwa pelatihan ini dapat meningkatkan pengetahuan dan kemampuan secara softskill dan hardskill para guru.
Deteksi Bot Spammer Twitter Berbasis Time Interval Entropy dan Global Vectors for Word Representations Tweet’s Hashtag Arif Mudi Priyatno; Muhammad Mirza Muttaqi; Fahmi Syuhada; Agus Zainal Arifin
Register: Jurnal Ilmiah Teknologi Sistem Informasi Vol. 5 No. 1 (2019): January
Publisher : Information Systems - Universitas Pesantren Tinggi Darul Ulum

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26594/register.v5i1.1382

Abstract

Bot spammer merupakan penyalahgunaan user dalam menggunakan Twitter untuk menyebarkan pesan spam sesuai dengan keinginan user. Tujuan spam mencapai trending topik yang ingin dibuatnya. Penelitian ini mengusulkan deteksi bot spammer pada Twitter berbasis Time Interval Entropy dan global vectors for word representations (Glove). Time Interval Entropy digunakan untuk mengklasifikasi akun bot berdasarkan deret waktu pembuatan tweet. Glove digunakan untuk melihat co-occurrence kata tweet yang disertai Hashtag untuk proses klasifikasi menggunakan Convolutional Neural Network (CNN). Penelitian ini menggunakan data API Twitter dari 18 akun bot dan 14 akun legitimasi dengan 1.000 tweet per akunnya. Hasil terbaik recall, precision, dan f-measure yang didapatkan yaitu 100%; 100%, dan 100%. Hal ini membuktikan bahwa Glove dan Time Interval Entropy sukses mendeteksi bot spammer dengan sangat baik. Hashtag memiliki pengaruh untuk meningkatkan deteksi bot spammer.  Spam spammers are users' misuse of using Twitter to spread spam messages in accordance with user wishes. The purpose of spam is to reach the required trending topic. This study proposes detection of bot spammers on Twitter based on Time Interval Entropy and global vectors for word representations (Glove). Time Interval Entropy is used to classify bot accounts based on the tweet's time series, while glove views the co-occurrence of tweet words with Hashtags for classification processes using the Convolutional Neural Network (CNN). This study uses Twitter API data from 18 bot accounts and 14 legitimacy accounts with 1000 tweets per account. The best results of recall, precision, and f-measure were 100%respectively. This proves that Glove and Time Interval Entropy successfully detects spams, with Hash tags able to increase the detection of bot spammers.
STRATEGI PEMILIHAN KALIMAT PADA PERINGKASAN MULTI DOKUMEN Satrio Verdianto; Agus Zainal Arifin; Diana Purwitasari
NJCA (Nusantara Journal of Computers and Its Applications) Vol 1, No 2 (2016): Desember 2016
Publisher : Computer Society of Nahdlatul Ulama (CSNU) Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36564/njca.v1i2.14

Abstract

Ringkasan berita diartikan sebagai teks yang dihasilkan dari satu atau lebih kalimat yang menyampaikan informasi penting dari berita. Salah satu fase penting dalam peringkasan adalah pembobotan kalimat (sentence scoring). Dimana pada peringkasan berita, metode pembobotannya sebagian besar menggunakan fitur dari berita sendiri. Berdasarkan hasil dari penelitian [3] bahwa untuk pembobotan kalimat pada dokumen yang memiliki karakter teks pendek dan terstruktur seperti berita maka teknik pembobotan kalimat terbaik adalah dengan menggunakan kombinasi dari keempat fitur yaitu word frequency, TF-IDF, posisi kalimat, dan kemiripan kalimat terhadap judul (Resemblance to the title ). Pada penelitian ini kombinasi keempat fitur tersebut dibandingkan dengan kombinasi tiga fitur dan dua fitur dan dievaluasi menggunakan nilai ROUGE-N dan dievaluasi berdasarkan lama waktu eksekusi. Berdasarkan hasil uji coba didapatkan hasil bahwa yang paling optimal diantara keempat kombinasi fitur tersebut adalah kombinasi antara dua buah fitur yakni fitur posisi kalimat dan word frequency dengan nilai ROUGE-N sebesar 0.679 dan lama waktu eksekusi 28.458 detik.
ANALYSIS OF ADAPTIF LOCAL REGION IMPLEMENTATION ON LOCAL THRESHOLDING METHOD I Gusti Agung Socrates Adi Guna; Hendra Maulana; Agus Zainal Arifin; Dini Adni Navastara
NJCA (Nusantara Journal of Computers and Its Applications) Vol 1, No 2 (2016): Desember 2016
Publisher : Computer Society of Nahdlatul Ulama (CSNU) Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36564/njca.v1i2.10

Abstract

Thresholding is a simple and effective technique for image segmentation. Thresholding techniques can begrouped into two categories, global thresholding and local thresholding. All local threshold method generallybegins with determining thresholds in each pixel by checking the area centered on the pixel, using a box shape (x,y) which is fixed by the size of the neighborhood "b". If the neighborhood is very small, then the algorithm will besensitive to noise and excessive segmentation occurs. Whereas, if the size of the neighborhood is very large thenthe algorithm will apply resemble the global threshold method. In this study, we propose a method of calculationof Local Adaptive Region, to determine the value of each pixel that is flexible neighborhoods, where each pixelhas values different neighborhoods based on the value of the standard deviation region. Adaptive method on thelocal region thresholding consists of several processes, namely: Image Enhancement, Adaptive Local Region andthresholding. Based on evaluation of ME, image result of threshold using the Adaptive Local Region method, givingan average ME smallest value, that is 16.99% at Niblack method and 19.46% at Sauvola method. And onevaluation of the RAE, image result of threshold using the Adaptive Local Region method, giving an averageRAE smallest value, that is 15.26% at Niblack method and 25.58% at Sauvola method. In addition, the results oftrials with various noise variance represent that the method of Adaptive Local Region resistant to noise.
IMAGE THRESHOLDING BASED ON HIERARCHICAL CLUSTERING ANALYSIS AND PERCENTILE METHOD FOR TUNA IMAGE SEGMENTATION Alifia Puspaningrum; Nahya Nur; Ozzy Secio Riza; Agus Zainal Arifin
NJCA (Nusantara Journal of Computers and Its Applications) Vol 2, No 1 (2017): Juni 2017
Publisher : Computer Society of Nahdlatul Ulama (CSNU) Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36564/njca.v2i1.24

Abstract

Automatic classification of tuna image needs a good segmentation as a main process. Tuna image is taken with textural background and the tuna’s shadow behind the object. This paper proposed a new weighted thresholding method for tuna image segmentation which adapts hierarchical clustering analysisand percentile method. The proposed method considering all part of the image and the several part of the image. It will be used to estimate the object which the proportion has been known. To detect the edge of tuna images, 2D Gabor filter has been implemented to the image. The result image then threshold which the value has been calculated by using HCA and percentile method. The mathematical morphologies are applied into threshold image. In the experimental result, the proposed method can improve the accuracy value up to 20.04%, sensitivity value up to 29.94%, and specificity value up to 17,23% compared to HCA. The result shows that the proposed method cansegment tuna images well and more accurate than hierarchical cluster analysis method.
PERINGKASAN TEKS MULTI-DOKUMEN BERDASARKAN METODE SENTENCE EXTRACTION DAN WORD SENSE DISAMBIGUATION Khairiyyah Nur Aisyah; Syadza Anggraini; Agus Zainal Arifin
NJCA (Nusantara Journal of Computers and Its Applications) Vol 4, No 1 (2019): Juni 2019
Publisher : Computer Society of Nahdlatul Ulama (CSNU) Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36564/njca.v4i1.89

Abstract

Memahami makna utama yang terkandung dalam beberapa dokumen tentu tidak mudah dan membutuhkan waktu yang cukup lama. Menanggapi masalah tersebut, penelitian terkait peringkasan teks dokumen secara otomatis menjadi perhatian khusus dalam beberapa tahun terakhir. Penelitian ini mengusulkan metode peringkasan teks multi-dokumen yang dapat meningkatkan relevansi antar kalimat dengan menggunakan metode sentence extraction  dan word sense disambiguation. Metode sentence extraction yang digunakan didasarkan pada sentence distribution dan part of speech (POS) tagging. Berdasarkan pengujian peringkasan teks dengan metode yang diusulkan, nilai rata-rata ROUGE-1 adalah 0,712, 0,163, 0,247 pada recall, precision,  f-measure secara berurutan. Sedangkan hasil pengujian peringksan teks multi-dokumen tanpa menggunakan word sense disambiguation mendapatkan nilai rata-rata ROUGE-1 sebesar 0,685, 0,139, 0,216 pada recall, precision, f-measure secara berurutan. Hasil penelitian menunjukkan bahwa penggunaan metode sentence extraction dan word sense disambiguation pada peringkasan teks multi-dokumen dapat meningkatkan kualitas hasil peringkasan teks.
Lokal Fuzzy Thresholding Berdasarkan Pengukuran Fuzzy Similarity Pada Interaktif Segmentasi Citra Panoramik Gigi Wawan Gunawan; Agus Zainal Arifin
JURNAL INFOTEL Vol 9 No 1 (2017): February 2017
Publisher : LPPM INSTITUT TEKNOLOGI TELKOM PURWOKERTO

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20895/infotel.v9i1.162

Abstract

Dalam segmentasi citra, thresholding merupakan salah metode yang mudah dan sederhana untuk diimplementasikan. Pada citra panoramik gigi, penentuan global threshold masih kurang begitu optimal untuk diimplementasikan. Hal tersebut dikarenakan adanya factor penghambat seperti pencahayaan yang tidak merata dan citra yang kabur. Faktor-faktor tersebut dapat menyebabkan histogram tidak bisa dipartisi dengan baik, sehingga akan berpengaruh pada hasil segmentasi. Pada penelitian ini diusulkan lokal fuzzy thresholding berdasarkan pengukuran fuzzy similarity pada interaktif segmentasi citra panoramik gigi. Metode yang diusulkan terdiri dari tiga tahapan utama, tahap pertama region splitting untuk mendapatkan lokal region. Tahap kedua adalah user marking untuk mendapat inisial seed background dan objek, Tahap terakhir adalah pengukuran fuzzy similarity pada setiap lokal region untuk mendapatkan nilai lokal threshold. Hasil uji coba pada citra panoramik gigi, metode yang diusulkan berhasil melakukan segmentasi dengan rata-rata missclasification error (ME) 5.47%.
Seeded Region Growing pada Ruang Warna HSI untuk Segmentasi Citra Ikan Tuna Wanvy Arifha Saputra; Agus Zainal Arifin
JURNAL INFOTEL Vol 9 No 1 (2017): February 2017
Publisher : LPPM INSTITUT TEKNOLOGI TELKOM PURWOKERTO

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20895/infotel.v9i1.164

Abstract

Citra ikan tuna sebelum masuk tahapan klasifikasi, harus memiliki hasil segmentasi yang baik. Hasil segmentasi yang baik adalah objek dan background terpisah dengan jelas. Citra ikan tuna yang memiliki sebaran cahaya yang tidak merata dan memiliki tekstur yang kompleks akan menghasilkan kesalahan segmentasi. Salah satu metode segmentasi pada citra adalah seeded region growing dan parameter yang digunakan hanya dua yaitu seed dan threshold. Penelitian ini mengusulkan metode seeded region growing pada ruang warna HSI untuk segmentasi citra ikan tuna. Ruang warna RGB (red green blue) pada citra ikan tuna ditransformasikan kedalam ruang warna HSI (hue saturasi intesitas) yang kemudian hanya ruang hue untuk dijadikan segmentasi dengan menggunakan seeded region growing. Penentuan parameter seed dan threshold dilakukan secara manual dan hasil dari segmentasi tersebut dilakukan refinement dengan morfologi matematika. Pengujian dilakukan sebanyak 30 citra dan metode evaluasi hasil segmentasi menggunakan RAE (relative foreground area error), MAE (missclassification error) dan MHD (modified Hausdroff distance). Citra ikan tuna berhasil dilakukan segmentasi dengan dibuktikan nilai RAE, ME dan MHD secara berturut adalah 5,40%, 1,53% dan 0,41%.
Perhitungan Kemiripan Term Co-occurence Berdasarkan Cluster Dokumen Untuk Pengembangan Thesaurus Bahasa Arab Dika Rizky Yunianto; Agus Zainal Arifin
JURNAL INFOTEL Vol 9 No 1 (2017): February 2017
Publisher : LPPM INSTITUT TEKNOLOGI TELKOM PURWOKERTO

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20895/infotel.v9i1.168

Abstract

Salah satu cara dalam pembentukan thesaurus adalah dengan cara menghitung nilai kemiripan term. Untuk mendapatkan nilai kemiripan tersebut dapat dilakukan dengan pendekatan co-occurence yaitu melihat frekuensi kemunculan bersama term-term tersebut. Frekuensi tersebut dilihat dari seberapa banyak term tersebut muncul bersama pada dokumen-dokumen corpus. Setiap dokumen-dokumen yang terdapat pada corpus memiliki konten atau topik yang berbeda-beda. Sehingga term-term yang berada pada dokumen suatu topik akan memiliki konteks yang berbeda dengan term-term pada dokumen dengan topik lainnya. Oleh sebab itu, paper ini mengusulkan metode baru dalam perhitungan kemiripan term dengan co-occurence yang memperhatikan cluster dari dokumen pada pengembangan thesaurus Bahasa Arab. Dokumen-dokumen corpus akan di clustering untuk mengelompokkan berdasarkan kedekatan konten dari dokumen tersebut. Untuk mendapatkan nilai kemiripan term dilakukan perhitungan clusterweight dengan memanfaatkan nilai dari inverse class frequency setiap term terhadap cluster yang ada. Thesaurus dibentuk dengan melihat nilai hasil perhitungan kemiripan term tersebut. Thesaurus yang dibentuk dengan metode usulan berhasil meningkatkan relevansi antar term dibuktikan dengan hasil percobaan memiliki nilai precision tertinngi sebesar 63,3%, recall sebesar 78,6% dan f-measure sebesar 50%.
Topic Modelling Using VSM-LDA For Document Summarization Luthfi Atikah; Novrindah Alvi Hasanah; Agus Zainal Arifin
ULTIMATICS Vol 14 No 2 (2022): Ultimatics : Jurnal Teknik Informatika
Publisher : Faculty of Engineering and Informatics, Universitas Multimedia Nusantara

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31937/ti.v14i2.2854

Abstract

Summarization is a process to simplify the contents of a document by eliminating elements that are considered unimportant but do not reduce the core meaning the document wants to convey. However, as is known, a document will contain more than one topic. So it is necessary to identify the topic so that the summarization process is more effective. Latent Dirichlet Allocation (LDA) is a commonly used method of identifying topics. However, when running a program on a different dataset, LDA experiences "order effects", that is, the resulting topic will be different if the train data sequence is changed. In the same document input, LDA will provide inconsistent topics resulting in low coherence values. Therefore, this paper proposes a topic modelling method using a combination of LDA and VSM (Vector Space Model) for automatic summarization. The proposed method can overcome order effects and identify document topics that are calculated based on the TF-IDF weight on VSM generated by LDA. The results of the proposed topic modeling method on the 1300 Twitter data resulted in the highest coherence value reaching 0.72. The summary results obtained Rouge 1 is 0.78, Rouge 2 is 0.67 dan Rouge L is 0.80.
Co-Authors - Azhari AA Sudharmawan, AA Adenuar Purnomo Adhi Nurilham Adi Guna, I Gusti Agung Socrates Afrizal Laksita Akbar Ahmad Afiif Naufal Ahmad Reza Musthafa, Ahmad Reza Ahmad Syauqi Aida Muflichah Aidila Fitri Fitri Heddyanna Akira Asano Akira Taguchi Akwila Feliciano Alhaji Sheku Sankoh, Alhaji Sheku Alif Akbar Fitrawan, Alif Akbar Alifia Puspaningrum Alqis Rausanfita Amelia Devi Putri Ariyanto Aminul Wahib Aminul Wahib Aminul Wahib Ana Tsalitsatun Ni'mah Andi Baso Kaswar Andi Baso Kaswar Anindhita Sigit Nugroho Anindita Sigit Nugroho Anny Yunairti Anny Yuniarti Anto Satriyo Nugroho Arif Fadllullah Arif Mudi Priyatno Arifin, M. Jainal Arifzan Razak Arini Rosyadi Arrie Kurniawardhani Arya Widyadhana Arya Yudhi Wijaya Bagus Satria Wiguna Bagus Setya Rintyarna Baskoro Nugroho Bilqis Amaliah Chandranegara, Didih Rizki Chastine Fatichah Christian Sri kusuma Aditya, Christian Sri kusuma Cinthia Vairra Hudiyanti Cornelius Bagus Purnama Putra Daniel Sugianto Daniel Swanjaya Darlis Herumurti Dasrit Debora Kamudi Desepta Isna Ulumi Desmin Tuwohingide Dhian Kartika Diana Purwitasari Didih Rizki Chandranegara Dika Rizky Yunianto Dimas Fanny Hebrasianto Permadi Dini Adni Navastara, Dini Adni Dinial Utami Nurul Qomariah Dwi Ari Suryaningrum Dyah S. Rahayu Eha Renwi Astuti Endang Juliastuti Erliyah Nurul Jannah, Erliyah Nurul Ery Permana Yudha Eva Firdayanti Bisono Evan Tanuwijaya Evelyn Sierra Fahmi Syuhada Fahmi Syuhada Fandy Kuncoro Adianto Fathoni, Kholid Fiqey Indriati Eka Sari Gosario, Sony Gulpi Qorik Oktagalu Pratamasunu Gus Nanang Syaifuddiin Handayani Tjandrasa Hanif Affandi Hartanto Hudan Studiawan Humaira, Fitrah Maharani Humaira, Fitrah Maharani I Guna Adi Socrates I Gusti Agung Socrates Adi Guna I Made Widiartha I Putu Gede Hendra Suputra Indra Lukmana Irna Dwi Anggraeni, Irna Dwi Ismail Eko Prayitno Rozi Januar Adi Putra Kevin Christian Hadinata Khadijah F. Hayati Khairiyyah Nur Aisyah Khairiyyah Nur Aisyah, Khairiyyah Nur Khalid Khalid Khoirul Umam Kholid Fathoni Lafnidita Farosanti Laili Cahyani Lutfiani Ratna Dewi Luthfi Atikah M. Ali Fauzi M. Jainal Arifin Mamluatul Hani’ah Maulana, Hendra Maulana, Hendra Mika Parwita Moch Zawaruddin Abdullah Moh. Zikky Moh. Zikky, Moh. Mohammad Fatoni Anggris, Mohammad Fatoni Mohammad Sonhaji Akbar Muhamad Nasir Muhammad Bahrul Subkhi Muhammad Fikri Sunandar Muhammad Imron Rosadi Muhammad Imron Rosadi Muhammad Machmud Muhammad Mirza Muttaqi Muhammad Muharrom Al Haromainy Munjiah Nur Saadah Muttaqi, Muhammad Mirza Nahya Nur Nanang Fakhrur Rozi Nanik Suciati Nina Kadaritna Nova Hadi Lestriandoko Novi Nur Putriwijaya Novrindah Alvi Hasanah Nur, Nahya Nuraisa Novia Hidayati Nursanti Novi Arisa Nursuci Putri Husain Ozzy Secio Riza Pangestu Widodo, Pangestu Pasnur Pasnur Pasnur Pasnur Puji Budi Setia Asih Putri Damayanti Putri Nur Rahayu Putu Praba Santika Rangga Kusuma Dinata Rarasmaya Indraswari Ratri Enggar Pawening Renest Danardono Resti Ludviani Rigga Widar Atmagi Riyanarto Sarno Riza, Ozzy Secio Rizka Sholikah Rizka Wakhidatus Sholikah Rizqa Raaiqa Bintana Rizqi Okta Ekoputris Rosyadi, Ahmad Wahyu Ryfial Azhar, Ryfial Safhira Maharani Safri Adam Saiful Bahri Musa Salim Bin Usman Saputra, Wahyu Syaifullah Jauharis Satrio Verdianto Satrio Verdianto Setyawan, Dimas Ari Sherly Rosa Anggraeni Siprianus Septian Manek Sonny Christiano Gosaria Sugiyanto, Sugiyanto Suprijanto Suprijanto Suwanto Afiadi Syadza Anggraini Syuhada, Fahmi Takashi Nakamoto Tegar Palyus Fiqar Tesa Eranti Putri Tio Darmawan Umi Salamah Undang Rosidin Verdianto, Satrio Waluya, Onny Kartika Wanvy Arifha Saputra Wardhana, Septiyawan R. Wawan Gunawan Wawan Gunawan Wawan Gunawan Wawan Gunawan Wijayanti Nurul Khotimah Wiwik Dyah Septiana Kurniati Yudhi Diputra Yufis Azhar Yulia Niza Yunianto, Dika R. Zainal Abidin Zakiya Azizah Cahyaningtyas