p-Index From 2021 - 2026
11.707
P-Index
This Author published in this journals
All Journal JURNAL SISTEM INFORMASI BISNIS Techno.Com: Jurnal Teknologi Informasi Scientific Journal of Informatics CESS (Journal of Computer Engineering, System and Science) Sinkron : Jurnal dan Penelitian Teknik Informatika JISTech (Journal of Islamic Science and Technology) JURNAL TEKNOLOGI DAN OPEN SOURCE JURNAL PENDIDIKAN TAMBUSAI Jurnal Nasional Komputasi dan Teknologi Informasi J-SAKTI (Jurnal Sains Komputer dan Informatika) IJISTECH (International Journal Of Information System & Technology) JOURNAL OF SCIENCE AND SOCIAL RESEARCH Jurnal Mantik JISKa (Jurnal Informatika Sunan Kalijaga) Technologia: Jurnal Ilmiah Jurnal Ilmu Komputer dan Bisnis Health Information : Jurnal Penelitian Journal of Applied Engineering and Technological Science (JAETS) JSR : Jaringan Sistem Informasi Robotik Jatilima : Jurnal Multimedia Dan Teknologi Informasi Journal of Computer System and Informatics (JoSYC) JIKA (Jurnal Informatika) INFOKUM Community Development Journal: Jurnal Pengabdian Masyarakat Journal of Computer Science, Information Technology and Telecommunication Engineering (JCoSITTE) El-Qist : Journal of Islamic Economics and Business (JIEB) Journal of Computer Networks, Architecture and High Performance Computing Jurasik (Jurnal Riset Sistem Informasi dan Teknik Informatika) Jurnal Teknik Informatika (JUTIF) IJISTECH Journal of Applied Data Sciences Jurnal FASILKOM (teknologi inFormASi dan ILmu KOMputer) Walisongo Journal of Information Technology Syntax: Journal of Software Engineering, Computer Science and Information Technology Jurnal Teknologi Sistem Informasi dan Sistem Komputer TGD Instal : Jurnal Komputer Jurnal Teknisi J-SAKTI (Jurnal Sains Komputer dan Informatika) International Journal of Education, Social Studies, And Management (IJESSM) Jurnal Mandiri IT Jurnal Pustaka Data : Pusat Akses Kajian Database, Analisa Teknologi, dan Arsitektur Komputer Jurnal Sains dan Teknologi JOMLAI: Journal of Machine Learning and Artificial Intelligence Data Sciences Indonesia (DSI) Internet of Things and Artificial Intelligence Journal Jurnal Ilmiah Teknik Informatika dan Komunikasi Kesatria : Jurnal Penerapan Sistem Informasi (Komputer dan Manajemen)
Claim Missing Document
Check
Articles

Landasan Teori Metodologi Penelitian dalam Ilmu Komputer: Analisis Pendekatan Kuantitatif dan Kualitatif Farhan Amar Pramudya; M. Alfatoni Muarrip; Sigit Muslim Anggoro Pratono; Jundi Haqqoni; Radhifan Mardhi; Mhd Furqan
Jurnal Ilmiah Teknik Informatika dan Komunikasi Vol. 6 No. 1 (2026): Maret : Jurnal Ilmiah Teknik Informatika dan Komunikasi
Publisher : Lembaga Pengembangan Kinerja Dosen

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55606/juitik.v6i1.2011

Abstract

This study discusses the theoretical foundations of research methodology in computer science by analyzing quantitative and qualitative approaches. The rapid development of computer science requires appropriate research methods to ensure the validity and reliability of findings. This study aims to examine the characteristics, advantages, limitations, and applications of quantitative and qualitative methods in computer science research. The method used is a literature review of national and international scientific publications relevant to research methodology in computer science. The results show that quantitative approaches are suitable for measurement-based, experimental, and algorithm performance studies, while qualitative approaches are more appropriate for exploratory research, user experience analysis, and system evaluation in social contexts. This study is expected to provide theoretical guidance for researchers in selecting appropriate research methodologies.
An Interpretable Deep Learning Framework for Multi-Class Lung Disease Diagnosis Using ConvNeXt Architecture Basyir, Muhammad Khalidin; Furqan, Mhd; Fadlan, Aulia
Jurnal Teknik Informatika (Jutif) Vol. 6 No. 6 (2025): JUTIF Volume 6, Number 6, Desember 2025
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jutif.2025.6.6.5404

Abstract

Lung diseases remain a major global health challenge, requiring accurate and interpretable diagnostic systems to support timely detection and treatment. This study proposes a high-fidelity deep learning approach using the ConvNeXt architecture for automated multi-class classification of chest X-ray (CXR) images into five categories: Bacterial Pneumonia, Viral Pneumonia, COVID-19, Tuberculosis, and Normal. The methodology involved preprocessing 10.095 Kaggle-sourced images (normalization, CLAHE, augmentation, resizing) and training a ConvNeXt model for 70 epochs with the Adam optimizer. The model achieved strong performance with 92.66% validation accuracy, 86.32% test accuracy, a macro-average F1-score of 0.86, and a macro-average AUC of 0.99. Grad-CAM visualizations demonstrated the model's consistent focus on clinically relevant lung regions, significantly improving interpretability and clinical applicability. This study contributes to advancing interpretable AI methods for clinical decision support in medical imaging, offering a reliable and transparent framework for automated lung disease diagnosis.
Multiclass Skin Lesion Classification Algorithm using Attention-Based Vision Transformer with Metadata Fusion Furqan, Mhd.; Katuk, Norliza; Hartama, Dedy
Journal of Applied Data Sciences Vol 7, No 1: January 2026
Publisher : Bright Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47738/jads.v7i1.1017

Abstract

Early and accurate classification of skin lesions is essential for timely diagnosis and treatment of skin cancer. This study presents a novel multiclass classification framework that integrates dermoscopic images with clinical metadata using an attention-based Vision Transformer (ViT) architecture. The proposed model incorporates a mutual-attention fusion mechanism to jointly learn from visual and tabular inputs, augmented by a class-aware metadata encoder and imbalance-sensitive loss function. Training was conducted using the HAM10000 dataset over 30 epochs with a batch size of 32, utilizing the Adam optimizer and a learning rate of 0.0001. The model demonstrated superior performance compared to a ViT Baseline, achieving 93.4% accuracy, 92.2% F1-score, 0.95 AUC, and significant reductions in MAE and RMSE. Additionally, Grad-CAM visualizations confirmed the model’s ability to focus on diagnostically relevant regions, enhancing interpretability. These findings suggest that the integration of structured clinical information with transformer-based visual analysis can significantly improve classification robustness, particularly in underrepresented lesion types. However, the model’s current performance is evaluated only on the HAM10000 dataset, and its generalizability to other clinical or non-dermoscopic image sources remains to be validated. Future studies should therefore explore multi-institutional datasets and real-world deployment scenarios to assess robustness and scalability. The proposed framework offers a practical, interpretable solution for AI-assisted skin lesion diagnosis and demonstrates strong potential for clinical deployment.
Klasifikasi Komentar Kasar pada TikTok Menggunakan TF-IDF dan Logistic Regression Anggraini, Delia; Wahyudin, Rahmat; Wicaksana, Agum; ., Zulpadli; Zulnun, M. Ridho Azmuddin; Furqan, Mhd
Jurnal Sains dan Teknologi (JSIT) Vol. 5 No. 3 (2025): September-Desember
Publisher : CV. Information Technology Training Center - Indonesia (ITTC)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47233/jsit.v5i3.3906

Abstract

The increasing intensity of user interaction on the TikTok platform makes the comment section vulnerable to the emergence of rude comments, impolite speech, and negative verbal expressions that can reduce the quality of digital communication. The characteristics of TikTok language, which is informal, concise, and rich in slang variations and non-standard spelling, present challenges in the process of automatically identifying rude comments, especially in the Indonesian context. This study aims to develop and evaluate a binary classification model capable of distinguishing rude and non-rude comments on the TikTok platform using a text-based machine learning approach. The research method began with the collection of 650 Indonesian-language public comments from TikTok, which were then manually annotated into two classes: rude and non-rude comments. The labeled data were processed through preprocessing stages including text cleaning, case folding, slang normalization, repeated character reduction, tokenization, and stopword removal. Feature representation was carried out using the Term Frequency–Inverse Document Frequency (TF-IDF) method with a combination of unigrams and bigrams, while the classification process used the Logistic Regression algorithm. The data were divided into training data and test data with a ratio of 80:20. The analysis techniques used included evaluating model performance using accuracy, precision, recall, and F1-score metrics. The results showed that the model achieved an accuracy of 87.4%, with precision, recall, and F1-score values ​​of 0.87 each, indicating good and balanced classification performance across both classes. These findings indicate that the combination of TF-IDF and Logistic Regression is effective as a baseline in classifying abusive Indonesian comments on the TikTok platform.
Design and Implementation of a Web-Based Document Archive Application at the North Sumatra Education Quality Assurance Agency Hasibuan, Naina Nazwa; Harahap, Tiara Bela; Furqan, Mhd.
International Journal Of Education, Social Studies, And Management (IJESSM) Vol. 6 No. 1 (2026): The International Journal of Education, Social Studies, and Management (IJESSM)
Publisher : LPPPIPublishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52121/ijessm.v6i1.975

Abstract

Document archiving management is an important aspect of administrative activities in institutions. Manual archiving processes often cause problems such as delays in document retrieval, risk of data loss, and inefficiency in report preparation. This study aims to design and develop a web-based document archiving application that can manage incoming and outgoing documents in a structured and integrated manner. The research method consists of data collection, system requirements analysis, system design, application implementation, and functional testing. The application is developed using PHP as the server-side programming language, MySQL as the database management system for data storage, and the Bootstrap framework to create a responsive and user-friendly interface. The results show that the developed application is able to store, manage, and display document data properly, as well as provide document recap features based on specific periods. Therefore, this web-based document archiving application can improve the effectiveness, efficiency, and security of document management.
PENERAPAN ALGORITMA BRUTE FORCE PADA APLIKASI PENERJEMAH BAHASA INDONESIA - BAHASA MANDAILING BERBASIS MOBILE Dalimunthe, Ayu Sahriani; Furqan, Mhd.; Hasugian, Abdul Halim
JOURNAL OF SCIENCE AND SOCIAL RESEARCH Vol 8, No 2 (2025): May 2025
Publisher : Smart Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.54314/jssr.v8i2.3128

Abstract

Abstract: Language is a means to communicate. Knowledge of language is very important because in a conversation or conversation requires a language. In Indonesia, there are many various regional languages, including the Mandailing language. Mandailing language is one of the regional languages in South Tapanuli, North Sumatra. The use of regional languages has experienced a lot of decline in use in the language of everyday communication. Preserving regional languages is very necessary in the midst of increasingly rapid technological developments. Dictionary media can be a solution to introduce various regional languages in Indonesia. In this study, the design and development of the Indonesian-Mandailing Translator Application was carried out with the application of the Mobile-based Brute Force Algorithm. This application was built using Android Studio software using the Java programming language and XML. The database used to store data for the Batak Mandailing-Indonesian translator is a SQLite database so that the application can be used offline. Applications that are designed in a user friendly manner can perform the search function for Indonesian-Mandailing and Mandailing-Indonesian Vocabulary, making it easier for users to operate them. Keywords: Mandailing language, dictionary, Brute Force Algorithm, Android                  Application Abstrak: Bahasa merupakan sarana untuk berkomunikasi. Pengetahuan bahasa sangatlah penting karena dalam sebuah percakapan atau pembicaraan memerlukan sebuah bahasa. Di Indonesia ada banyak beragam bahasa daerah diantaranya adalah Bahasa Mandailing. Bahasa Mandailing merupakan salah satu bahasa daerah bagian Tapanuli Selatan, Sumatera Utara. Penggunaan bahasa daerah telah mengalami banyak penurunan penggunaan dalam bahasa komunikasi sehari-hari. Melestarikan bahasa daerah sangat perlu ditengah perkembangan teknologi yang semakin pesat. Media kamus dapat menjadi solusi untuk mengenalkan beragam bahasa daerah yang ada di Indonesia. Dalam penelitian ini dilakukan perancangan dan membangun Aplikasi Penerjemah Bahasa Indonesia-Mandailing dengan penerapan Algoritma Brute Force berbasis mobile. Aplikasi ini dibangun menggunakan perangkat lunak Android Studio menggunakan bahasa pemrograman Java dan XML. Database yang digunakan untuk menyimpan data penerjemah bahasa Batak Mandailing-Indonesia adalah SQLite database sehingga aplikasi dapat digunakan secara offline. Aplikasi yang dirancang secara user friendly dapat melakukan fungsi pencarian Kosa kata Bahasa Indonesia - Mandailing dan Mandailing - Indonesia sehingga memudahkan para pengguna dalam mengoperasikannya. Kata kunci: Bahasa Mandailing, Kamus, Aplikasi Android 
Co-Authors ., Zulpadli Abdul Aziz Abdul Halim Hasugian Adha, Rifki Mahsyaf Agpina, Pipi Ahmad Fakhri Ab. Nasir Ahmad Fauzi Aidil Halim Lubis Aisyah Nurrahmah Siregar Akmal, Muhammad Haikal Anggraini, Delia Anwar, Mufti Husain Apriansyah, Yuda Ardyanti, Tiwy Armansyah Armansyah Armansyah Armansyah Armansyah Armansyah Armansyah, A Aulia, Atiqah Aulia, Muhammad Arief Aulia, Muhammad Fathir Aulia, Rafif Risdi Badria, Lailatul Bagus Ageng Alfahri Basyir, Muhammad Khalidin Br Rambe, Indri Gusmita Cahyadi, Bhagaskara Dalimunthe, Ayu Sahriani Daulay, Ikhsan Agus Martua Diah Putri Kartikasari Elce, Furkan Fadil, Ulfi Muzayyanah Fadillah, Rini Fadlan, Aulia Fahrul Azis Nasution Faiza, Nayla Fakhriza, M. fandi, Fandi Ahmad Farhan Amar Pramudya FIKRI HAIKAL Gunawan, Irwan Harahap, Khaila Mukti Harahap, Raihan Rizieq Harahap, Rosa Linda Harahap, Tiara Bela Hartama, Dedy Hasibuan, Naina Nazwa Hasrul Hasibuan, Mhd Fikri Heri Santoso Himawan Hasibuan, Riswanda Ichsan HP, Kiki Iranda Hsb, Dinda Umami Hsb, Munawir Siddik Hutagalung, Muhammad Wandisyah R Ilham Fuadi Nasution Imam Zaki Husein Nst Iskandar, Rozai Ismail Pulungan Januar, Bagus Jundi Haqqoni juwita sari K Khairunnisa Katuk, Norliza Khairi, Nouval Khairunnisa Khairunnisa Khairunnisa, K Kurniawan, Riski Askia Lely Sahrani Lubis, Akbar Maulana M. Alfatoni Muarrip M. Fakhriza Mahendra, Rifandi Matondang, Toibatur Rahma Maulana Ihsan, Maulana Mey Hendra Putra Sirait Mhd Ikhsan Rifki Mhd Reza Alfani Muhammad Akbar Ramadhan Tanjung Muhammad Farhan Muhammad Ikhsan Muhammad Luthfi Muhammad Naufal Shidqi Muhammad Ridzki Hasibuan Muhammad Rizki Munadi Munadi Nabawy, Putri Nabila, Siti Fadiyah Nasution, Afri Yunda Nasution, Irma Yunita Nasution, Romaito Nasution, Zulia Lestari Ningsih, Siti Alus Novrianty, Amanda Nugroho, Agung Nur Bainatun Nisa Nurhasanah Nurhasanah Nurhidayati Nurhidayati Nurul Hadi Muliani Hariadi Saputra Nurzannah, Laila Pane, Putri Pratiwi Pangestu, Dimas Panggabean, Alwi Andika Pratama, Haris Prayoga Elfanda Fachmi Hasibuan Prayogi, Ahmad Pulungan, Miftahul Rizky Putra, Suan Ekie Nanda Putri, Alma Irawanti Radhifan Mardhi Raissa Amanda Putri Rakhmat Kurniawan R Ramadani, Wily Supi Ramadhan Nasution, Yusuf Ramadhani, Fredy Kusuma Razzaq H. Nur Wijaya Reza Muhammad Rifnandy, Muhammad Fauzan Rivaldi Prima Nanda Rizka Rizki Ananda Rizki Siregar, Awal Rizqi Hidayat Tanjung RR. Ella Evrita Hestiandari Saparuddin Siregar Saputri Nasution, Intan Widya Sembiring, Yogasurya Pranantha Shafa, Dafa Ikhwanu Sigit Muslim Anggoro Pratono Sinaga, Meri Siregar, Dzilhulaifa Siregar, Hervilla Amanda R. Siregar, Kalfida Eka Wati Sitepu, Anggi Jelita Siti Saniah Siti Sarah Harahap Siti Sumita Harahap Sitorus, Nur Shafwa Aulia Solly Aryza Sri Rahmadani Sri Wahyuni Sriani Sriani Sriani Sriani Sriani, S Suci Syahputri Suci Wulandari Suhardi, S Suhardi, Suhardi Susan Mayang Sari Syamia, Nanda Tambak, Tiara Ayu Triarta Tanjung, Tegar Haryahya Tria Elisa Wahyudin, Rahmat Wan Fadilla Rischa Wati, Putri Kurni Wicaksana, Agum Widiya Yuli Kartika Siregar Yusuf Ramadhan Nasution Yusuf Ramadhan Nasution, Yusuf Ramadhan Zabni, Nur Hera Zahra Humaira Kudadiri Ziqra Addilah Zulnun, M. Ridho Azmuddin