Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : Malcom: Indonesian Journal of Machine Learning and Computer Science

Pengelompokan Data Pendistribusian Listrik Menggunakan Algoritma Density Based Spatial Clustering of Application With Noise (DBSCAN): Clustering Electricity Distribution Data Using Density-Based Spatial Clustering of Applications With Noise (DBSCAN) Algorithm Farid, Miftah; Insani, Fitri; Agustian, Surya; Afriyanti, Liza
MALCOM: Indonesian Journal of Machine Learning and Computer Science Vol. 4 No. 3 (2024): MALCOM July 2024
Publisher : Institut Riset dan Publikasi Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.57152/malcom.v4i3.1426

Abstract

Pada masa kini, listrik sudah menjadi kebutuhan penting dalam kehidupan, karena kebanyakan aktivitas manusia bergantung pada listrik. Kebutuhan listrik pada setiap wilayah di Indonesia dipengaruhi oleh sejumlah faktor dan karakteristik khusus masing-masing. PLN mempublikasikan statistik penggunaan listrik untuk setiap wilayah di Indonesia dari tahun 2014 hingga 2022, yang terdiri dari 35 provinsi di Indonesia. Data ini menawarkan wawasan berharga untuk prediksi permintaan listrik, pelacakan tren historis untuk memprediksi pengembangan wilayah, memprioritaskan wilayah dengan permintaan tinggi untuk efisiensi dan konservasi energi, dan lain sebagainya.  Salah satu alat untuk mencapai tujuan tersebut adalah dengan mengelompokkan (clustering) wilayah berdasarkan karakteristik dan ciri-ciri wilayahnya. Penelitian ini melakukan proses clustering dengan membagi data pada tiga regional utama: Sumatera, Jawa-Bali, dan Kalimantan-Sulawesi, sementara regional Papua tidak dianalisis karena jumlah wilayah/propinsi yang terbatas. Metode yang dipakai adalah Density-Based Spatial Clustering of Applications with Noise (DBSCAN). Tuning parameter dengan cara pencarian grid dilakukan untuk memperoleh hasil optimal berdasarkan silhouette score. Hasil clustering dapat memberikan gambaran keunikan profil konsumsi listrik di tiap wilayah, dengan silhouette score terbaik sebesar 0.62 untuk regional Jawa-Bali, 0,67 untuk Kalimantan-Sulawesi, dan 0,64 untuk Sumatera. Penelitian menunjukkan bahwa algoritma DBSCAN dapat digunakan untuk pengelompokkan distribusi listrik dengan hasil yang efektif.