Claim Missing Document
Check
Articles

TICKER SYMBOL IDENTIFICATION WITH CIMA ON NON-STATIONARY STOCK PRICE DATASET Aji Gautama Putrada; Maman Abdurohman; Doan Perdana; Hilal Hudan Nuha
JITK (Jurnal Ilmu Pengetahuan dan Teknologi Komputer) Vol. 10 No. 1 (2024): JITK Issue August 2024
Publisher : LPPM Nusa Mandiri

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33480/jitk.v10i1.5349

Abstract

Ticker symbol identification based on stock price data in investor decisions has been proven to be pivotal. Though research exists on stock price forecasting, ticker symbol identification is still a research opportunity. Meanwhile, some temporal-sequential classification methods are available, such as classification-integrated moving average (CIMA) and recurrent neural network (RNN)-based deep learning such as long short-term memory (LSTM), and gated recurrent unit (GRU). Our research aim is to prove that CIMA can perform ticker symbol identification on non-stationary stock price datasets. This research collects ten most well-known stock price dataset from Kaggle and performs pre-processing. Then it designs CIMA with non-stationary data and the benchmark deep learning methods. Both methods are optimized with hyperparameter tuning and model selection between adaptive boosting (AdaBoost) and legacy k-nearest neighbors (KNN). The test results show five non-stationary features in the stock price dataset must go through a differentiation process. Then, AdaBoost has an accuracy of 0.9967 ± 0.001, while KNN has an accuracy of 0.9971 ± 0.001, with no significant difference based on t-test. Meanwhile, AdaBoost has a significantly smaller model size and testing and prediction time than KNN. In benchmarking, CIMA+AdaBoost is superior to the three other methods for accuracy, precision, recall, and f1-score, all of which have a value of 0.996. Our research contribution is ticker symbol identification based on stock price using CIMA on multiple-class sequential classification with non-stationary data. For future research, we advice to perform this method on other stock price data.
Implementation of Self-Hosted IoT Ecosystem on NPK Soil Monitoring System Nugroho, Aditya Bakti; Hasibuan, Faisal Candrasyah; Perdana, Doan
CEPAT Journal of Computer Engineering: Progress, Application and Technology Vol 3 No 01 (2024): February 2024
Publisher : Universitas Telkom

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25124/cepat.v3i01.6698

Abstract

In previous research, a tool has been made to detect soil NPK nutrient content with a screen display on the device. However, the reading results of the system cannot be monitored remotely. This research aims to develop a self-built IoT ecosystem to monitor the readings remotely. On the device side, a microcontroller can connect to the internet via a Wi-Fi network. The communication protocol selected is the MQTT protocol based on the pub-sub model. The software chosen to present the data is Node-RED. The service is self-hosted using a personal computer (PC). To be accessed from the internet, a tunneling service is used. The data presentation service obtained can be accessed remotely. Based on the test results, the MQTT protocol allows sending data only in the size of tens of bytes with an average delivery time of under one second. The data is presented in a dashboard that can be accessed via the internet with a browser.
HUMAN ACTIVITY RECOGNITION IMPROVEMENT ON SMARTPHONE ACCELEROMETERS USING CIMA Putrada, Aji Gautama; Abdurohman, Maman; Perdana, Doan; Nuha, Hilal Hudan
TEKTRIKA Vol 8 No 2 (2023): TEKTRIKA Vol.8 No.2 2023
Publisher : Telkom University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25124/tektrika.v8i2.6973

Abstract

Human activity recognition (HAR) is a research field that focuses on detecting user activities and has wide applications. However, the problems that need to be solved are real-time constraints and imbalanced datasets due to different activity frequencies. Our research aims to apply classification integrated moving averages (CIMA) to HAR by evaluating its performance regarding real-time constraints and imbalanced datasets. We achieved the smartphone accelerometer dataset from Kaggle, which consists of several activities: walking, jogging, climbing, and descending stairs. We develop a general CIMA windowing algorithm with hyperparameters J and W. We benchmark CIMA with two state-of-the-art HAR methods: distributed online activity recognition system (DOLARS) and convolutional neural network (CNN). We conducted some imbalance and model size analysis. The test results show that, with J = 10 and W = 240, CIMA performs better than DOLARS and CIMA with recall, precision, and f1-score of 0.996, 0.993, and 0.994. We also prove that CIMA, assisted by quantization, has the smallest model size compared to the CNN and DOLARS model sizes. Finally, we demonstrate that CIMA performs well for imbalanced datasets, where CIMA’s recall on upstairs and downstairs activities is better than DOLARS and CNN, with values of 1.00 and 0.98, respectively. Key Words: classification integrated moving average, human activity recognition, smartphone, accelerometer, imbalanced dataset
IEEE 802.11ah Network Planning for IoT Smart Meter Application: Case Study in Bandung Area Adhiatma, Fachri Nugraha; Perdana, Doan; Adriansyah, Nachwan Mufti; Raharjo, Risqi Herlambang
Jurnal Pekommas Vol 5 No 1 (2020): April 2020
Publisher : Sekolah Tinggi Multi Media “MMTC” Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30818/jpkm.2020.2050102

Abstract

The growth of Wireless Fidelity (WiFi) technology is so rapid and popular. The technology most widely used for WiFi services is the IEEE 802.11 family of standards. To support the Internet of Things (IoT) era, 802.11ah standard technology has developed, and the standard is intended to provide a low-cost mode of operation, with a wider coverage area, and can support thousands of devices per cell. This paper discusses IEEE 802.11ah Standard Network Planning for the Internet of Things Application (Case Study: Smart Meter Using WiFi.id Network in Bandung), to improve network quality in terms of coverage and capacity to improve the efficiency of the WiFi network and so that it can supports the Internet of Things (IoT) service. Network planning using 802.11ah for the internet of things application with a smart meter case study using the WiFi.id network has been successfully carried out. To cover the entire area of Bandung, 23 sites are required. In the capacity, the Tx slots needed to cover possible smart meters for each site are only 9 tx slots out of a total of 100 tx slots. 
Analisis Kinerja Protokol Routing AOMDV pada VANET dengan Serangan Rushing RATNASIH, RATNASIH; AJINEGORO, RISKI MUKTIARTO NUGROHO; PERDANA, DOAN
ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika Vol 6, No 2: Published May 2018
Publisher : Institut Teknologi Nasional, Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26760/elkomika.v6i2.232

Abstract

ABSTRAKVehicular Ad-hoc Network (VANET) adalah salah satu jaringan mobile Ad Hocyang memiliki mobilitas tinggi serta topologi yang berubah – ubah secara konstan dalam waktu yang singkat. Sistem broadcast yang diterapkan padaVANET ketika pembentukan arsitektur infrastruktur bisa dijadikan peluang bagi penyerang node untuk melakukan serangan terhadap routing protocol. Rushing Attack adalah sebuah serangan jaringan dimana serangan ini melakukan duplikasi secara cepat dengan transmisi yang lebih tinggi untuk mengacaukan jaringan dan mendapatkan forward akses yang lebih dibandingkan dengan node yang lain. Sasaran utama dari penelitian ini yaitu untuk mengukur dampak dari serangan Rushing pada protocol routing AOMDV (Adhoc on Demand Multipath Distance Vector) menggunakan software NS-2. Nilai QoS yang didapatkan pada hasil penelitian ini tidak maksimal, karena attacker mengirimkan rushed routing packets (RREQ or RREP) yang mempengaruhi routing tabel eksisting dan mengacaukan proses pengiriman paket.Kata kunci: VANET, Rushing Attack, AOMDV, NS-2  ABSTRACTVehicular Ad-hoc Network (VANET) is kind of an Ad-Hoc mobile network thathave high mobility and with changing topology constantly in a short time. The broadcast system that applied to the infrastructure architecture formation when VANET can be used as opportunities for penyerang nodes to perform attacks on the routing protocol. Rushing Attack is an attack on the network that the attacks quickly duplicating with higher transmission to disrupt the network and getting forward more access than the other node. The main target of this project is to measure how big the impact of the rushing attack on AOMDV(Adhoc on Demand Multipath Distance Vector) routing protocol using NS-2 software. On this project did not gets the maximum value for QoS because the attacker sent rushed routing packets (RREQ or RREP) that affect the routing table and disturb the delivery package.Keywords: VANET, Rushing Attack, AOMDV, NS-2
Analisis Kinerja GPSR dan AODV pada VANET dengan Skema Pengimbangan Beban Trafik PRASETIA, RENDI DIAN; PERDANA, DOAN; NEGARA, RIDHA MULDINA
ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika Vol 6, No 2: Published May 2018
Publisher : Institut Teknologi Nasional, Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26760/elkomika.v6i2.207

Abstract

ABSTRAKSalah satu permasalahan di kota-kota besar adalah kemacetan lalu lintas yang disebabkan karena tidak mencukupinya ruas jalan, volume kendaraan yang begitu besar, persebaran kendaraan yang tidak merata dan lain-lain. Salah satu solusinya adalah para pengendara dapat menggunakan aplikasi peta digital pada smartphone-nya. Oleh karena itu perlu dilakukan pengimbangan beban trafik kendaraan. Pada penelitian ini akan dibahas mengenai kinerja VANET yang menggunakan protokol routing GPSR dan AODV dengan skema pengimbangan beban trafik kendaraan dengan pengaruh kepadatan node. Perancangan sistem simulasi terbagi menjadi dua subsistem yaitu subsistem mobilitas dan jaringan. Kemudian dilakukan pengimbangan beban trafik kendaraan, dan kinerja VANET akan diamati. Performansi dievaluasi dengan average end to end delay, throughput, dan packet delivery ratio. Nilai rata-rata throughput, PDR, delay untuk GPSR adalah 142.21 Kbps, 87.47 %, dan 82.83 ms. Sedangkan AODV adalah 119.81 Kbps, 86.67 %, dan 103.21 ms. Dari hasil penelitian nilai QoS performansi dari routing protocol GPSR lebih baik dari pada AODV pada VANET.Kata kunci: Vanet, Pengimbangan Beban, GPSR, AODV.ABSTRACTOne of the problems in big cities is congestion. The congestion is caused byinsufficient road segment, large volume of vehicles, unbalanced spread ofvehicles and others. One solution is that riders can use digital map applications on their smartphones. Therefore it is necessary to balancing the traffic load of vehicles. In this research will be discussed about VANET performance using GPSR and AODV routing protocol with vehicle traffic load balancing scheme with node density influence. The design of the simulation system is divided into two subsystems namely mobility and network subsystem. Then balancing the vehicle traffic load, and VANET performance will be observed. Performance is evaluated with the average end to end delay, throughput, and packet delivery ratio. The mean value of throughput, PDR, delay for GPSR respectively 142.21 Kbps, 87.47%, and 82.83 ms. While AODV is 119.81 Kbps, 86.67%, and 103.21 ms. From the simulation results can be concluded that the performance of GPSR is better than AODV on VANET. Keywords: Vanet, Load Balancing, GPSR, AODV.
Development of an IoT-Based Device for Real-Time Detection of Soil NPK Nutrient Content to Optimize Soybean Yields Doan Perdana; Ongko Cahyono; Suntoro Suntoro
Agrotechnology Research Journal Vol 8, No 2 (2024): Agrotechnology Research Jurnal
Publisher : Perkumpulan Agroteknologi/Agroekoteknologi Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20961/agrotechresj.v8i2.98098

Abstract

The optimal growth of soybean plants is critically dependent on the availability of essential nutrients in the soil, particularly nitrogen (N), phosphorus (P), and potassium (K). Plants achieve optimal growth when nutrient levels exceed deficiency thresholds. A significant challenge in soybean cultivation at the farmer level is the precise determination of fertilizer dosage and timing of application. This study presents an Internet of Things (IoT)-based device for the real-time detection of NPK nutrient content in soil, aimed at enhancing soybean yields. The device enables timely and accurate nutrient application, minimizing the soil's residual fertilizer risk, which can lead to environmental pollution and decreased land productivity. Field experiments were conducted to evaluate NPK fertilization methods on soybean crops in two distinct soil types, namely Vertisol and Entisol. The methodology involved comparing local farmers' fertilization practices with the recommendations derived from the NPK detection device. Results illustrated a significant increase in soybean yields when fertilization was performed according to the device's recommendations, yielding an increase from 1.2 to 1.79 t.ha-1 on Vertisol soil and from 1.75 to 2.57 t.ha-1 on Entisol soil.
Pengembangan Aplikasi Dashboard Pada Pemetaan Kesuburan Tanah Di Provinsi Jawa Barat Berbasis Geographical Information System (Gis) Febriansyah B, Muh Asyraf; Putra, Seno Adi; Perdana, Doan
eProceedings of Engineering Vol. 12 No. 1 (2025): Februari 2025
Publisher : eProceedings of Engineering

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Abstrak — Pengembangan Kesuburan tanah merupakan faktor kunci dalam menentukan produktivitas pertanian.Di Provinsi Jawa Barat, sekitar 30% lahan pertanian mengalami penurunan kesuburan, yang disebabkan olehpraktik pertanian yang tidak berkelanjutan seperti penggunaan pupuk kimia secara berlebihan dankurangnya rotasi tanaman. Penurunan kesuburan ini menyebabkan penurunan hasil panen, yang berdampaknegatif terhadap ketahanan pangan di wilayah tersebut. Selain itu, variasi dalam tingkat kesuburan tanahmenciptakan tantangan besar bagi petani dalam menentukan strategi penanaman yang optimal.Kurangnya akses terhadap informasi yang akurat dan terkini mengenai kondisi kesuburan tanah memperburuksituasi ini, menghambat petani dalam membuat keputusan yang tepat terkait pengelolaan lahan.Penelitian ini mengembangkan aplikasi dashboard untuk memetakan kesuburan tanah menggunakanGeographical Information System (GIS). Tujuan aplikasi ini adalah membantu petani, penyuluh, dan pihak terkaitdalam menganalisis kondisi tanah dan membuat keputusan yang lebih tepat terkait pemilihan tanamandan pengelolaan lahan. Metodologi yang digunakan adalah Extreme Programming (XP), yangmemungkinkan pengembangan perangkat lunak secara iteratif dengan umpan balik langsung dari pengguna.Aplikasi ini dilengkapi fitur visualisasi data tanah,analisis kesuburan tanah, dan rekomendasi tanaman. Hasil pengujian menunjukkan aplikasi ini efektif dalammemetakan dan menganalisis data kesuburan tanah, serta dapat mendukung pengambilan keputusan di sektorpertanian. Diharapkan, aplikasi ini dapat meningkatkan efisiensi pengelolaan lahan pertanian di Jawa Barat danberkontribusi positif terhadap ketahanan pangan di Indonesia. Kata kunci— Web GIS, Pemetaan Kesuburan Tanah, Dashboard, Geographical Information System, pH Tanah,Kelembaban Tanah, Nitrogen, Fosfor, Kalium, Pertanian Berkelanjutan.
Pengembangan Aplikasi Pelaporan Kesuburan Tanah Pertanian Di Provinsi Jawa Barat Berbasis Geographical Information System (GIS) Andini, Rodia; Putra, Seno Adi; Perdana, Doan
eProceedings of Engineering Vol. 12 No. 1 (2025): Februari 2025
Publisher : eProceedings of Engineering

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Abstrak — Indonesia dikenal sebagai negara agraris yang sangat bergantung pada sektor pertanian sebagai sumberutama mata pencaharian dan pendorong pembangunan ekonomi. Namun, di Provinsi Jawa Barat, kesuburan tanahpertanian mengalami penurunan yang signifikan akibat praktik pertanian yang tidak berkelanjutan, seperti penggunaan pupukkimia secara berlebihan dan kurangnya rotasi tanaman. Penurunan kesuburan tanah ini menjadi masalah serius karenamenghambat kemampuan tanah dalam mendukung pertumbuhan tanaman, yang pada akhirnya berdampak padarendahnya produktivitas pertanian. Penelitian ini bertujuanuntuk mengatasi masalah tersebut dengan mengembangkansebuah aplikasi pelaporan kesuburan tanah berbasisGeographical Information System (GIS). Aplikasi ini dirancanguntuk memetakan dan memantau kondisi kesuburan tanahsecara real-time, sehingga dapat membantu petani, penyuluh,dan pemerintah dalam mengambil keputusan yang lebih efektifdan efisien terkait pengelolaan lahan pertanian.Pengembangan aplikasi ini dilakukan menggunakan metodeExtreme Programming (XP), yang memungkinkan prosesiterasi berkelanjutan dan respons yang cepat terhadapperubahan kebutuhan pengguna. Aplikasi ini diuji melaluibeberapa metode pengujian, termasuk Black Box Testing, LoadTesting, dan User Acceptance Testing (UAT), untukmemastikan aplikasi berfungsi sesuai dengan kebutuhanpengguna serta mampu menangani beban kerja yangdiharapkan. Hasil penelitian menunjukkan bahwa aplikasi iniefektif dalam menyediakan informasi kesuburan tanah secaraakurat dan efisien. Aplikasi ini tidak hanya mendukung praktikpertanian berkelanjutan tetapi juga berpotensi meningkatkanproduktivitas lahan serta membantu pemerintah dalampengelolaan sumber daya pertanian di Provinsi Jawa Barat. Kata kunci— Pertanian, Kesuburan Tanah, Geographical Information System (GIS), Extreme Programming (XP),Pengujian Aplikasi
Enhancing Soybean Fertilization Optimization with Prioritized Experience Replay and Noisy Networks in Deep Q-Networks Fakhrezi, Alfian; Budiman, Gelar; Perdana, Doan
Jurnal Ilmiah Teknik Elektro Komputer dan Informatika Vol. 11 No. 2 (2025): June
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/jiteki.v11i2.30690

Abstract

This study focuses on the optimization of reinforcement learning in the Deep Q Network algorithm. This is achieved using the prioritized experience replay algorithm and Noisy Network optimization. The main goal is to optimize fertilization so that it can adapt to its environment and avoid over-fertilization. This study uses the prioritized experience replay algorithm and Noisy Network optimization to create an agent in RL that is able to explore and exploit optimally so that it can improve the precision of fertilization in soybeans. This methodology includes several steps, including data preparation, creating an environment that matches real-world conditions, and validating changes in soil nutrient conditions.  The RL model was trained with PER and NN, with performance evaluated using cumulative reward, convergence speed, action distribution, and Mean Squared Error (MSE). The main results of the study show that DQN-PER NN achieves the highest cumulative reward, approaching 600,000 in 1000 episodes, outperforming standard DQN, A2C, and PPO. It also converges faster at episode 230, indicating superior adaptability. In addition, the results of this study indicate that the model that has been created is able to recommend a dose of SP36 fertilizer of 150 kg/ha, urea fertilizer of 100 kg/ha, and KCL fertilizer of 125 kg/ha. Compared with the A2C and PPO methods, the dose of urea fertilizer is reduced by 14%, KCL fertilizer is reduced by 33%, while for SP36 the difference is 23%. In Conclusion this model effectively distributes actions based on environmental conditions, which supports sustainable agriculture. In conclusion, the integration of PER and NN into DQN significantly improves exploration and decision making, and optimizes soybean fertilization. This model not only improves harvest efficiency but also encourages sustainable agricultural practices.
Co-Authors A. Ali Muayyadi Abdulqadir Muhtadi Achmad Ali Muayyadi Achmad Auliyaa Zulfikri Achmad Auliyaa Zulkifri Adhiatma, Fachri Nugraha Adi Nugroho Ahmad Tri Hanuranto Ahmad Tsaqib Hakim Aji Gautama Putra Aji Gautama Putrada AJINEGORO, RISKI MUKTIARTO NUGROHO Albion Apta Zaim Alfin Hikmaturokhman Ana Oktaviana Ana Oktaviana Ana Oktaviana, Ana Ananda Irsyad Andini, Rodia Arfianto Fahmi Arief Rakhman Arif Indra Irawan Arisman Putra Munggaran Arrum Prima Dewi Asep Mulyana Aziz Nurul Iman Bagus Aditya Bagus Aditya Brian Pamukti Cyril Nugrahutama Kurnaman Danu Dwi Sanjoyo Dewi Rasni Putri Dewi, Arrum Prima Dilla Fajar Sukma Dilaga Dilla Fajar Sukma Dilaga Dwi Kresna Wijaya Elsa Mustikawati Endang Chumaidiyah Erna Sri Sugesti Erwin Susanto Fachri Nugraha Adhiatma Faisal Budiman Faisal Candrasyah Hasibuan Fakhrezi, Alfian Favian Dewanta Febriansyah B, Muh Asyraf Fidar Adjie Gelar Budiman Gustommy Bisono Hakim, Ahmad Tsaqib Hendro Iman Pangestu Herda Theo Perdana Hilal Hudan Nuha Husneni Mukhtar Ilman Syakir Saputra Imam Nashiruddin Inda Izzatin Tujza Kayla Vernanda, Nafisa Keinan Shofiandieni Haryo Putri Kurnaman, Cyril Nugrahutama Leanna Vidya Yovita Lisnawati S. Bangun M. Adnan Nur Adrika M. Irfan Pratama Maghfuri, Syakir Maman Abdurohman Mirdan Syahid Mulya Sudrajat Muhammad Irfan Denatama Muhammad Irfan Denatama, Muhammad Irfan Mulki Nurullah Perbawa Mustikawati, Elsa Nachwan Mufti Nachwan Mufti Adriansyah Nindy Ayu Marthaliana Nugroho, Aditya Bakti Nuha, Hilal H Ongko Cahyono Parman Sukarno Perbawa, Mulki Nurullah PRASETIA, RENDI DIAN Pratama, M. Irfan Putra, Made Adi Paramartha Raharjo, Risqi Herlambang Rahmat Yasirandi Raja Surya Dharma Lubis Ratnasih Ratnasih Ratnasih _ RATNASIH, RATNASIH Rendy Munadi Revan Faredha Aswariza Revan Faredha Aswariza, Revan Faredha Ridha Muldina Negara Ridha Negara Rini Cahyani Risqi Herlambang Raharjo Risyad Riyadi Robby C. Manurung Ryan Danny Kresnawan Salsa Rizkiana Seno Adi Putra Sidik Prabowo Siska Riantini Arif Sofia Nafila Putri Sophie Dwivita Evans Anthen Sri Ariyanti Suntoro Suntoro Taufik Hasan Triani Wulandari Triani Wulandari Triani Wulandari Tsaqib, Aliya Uke Kurniawan Usman Vinsensius Sigit Widhi Prabowo Vita Azrina Aulia Warsa, Candra Eka Dwi Winana Aperta Libar Yakobus Yulyanto Kevin Yoslie Yoslie Yudha Purwanto Yulius Anggoro Pamungkas Zulfikri, Achmad Auliyaa