Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : International Journal of Advances in Intelligent Informatics

Lightweight pyramid residual features with attention for person re-identification Reza Fuad Rachmadi; I Ketut Eddy Purnama; Supeno Mardi Susiki Nugroho
International Journal of Advances in Intelligent Informatics Vol 9, No 1 (2023): March 2023
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/ijain.v9i1.702

Abstract

Person re-identification is one of the problems in the computer vision field that aims to retrieve similar human images in some image collections (or galleries). It is very useful for people searching or tracking in a closed environment (like a mall or building). One of the highlighted things on person re-identification problems is that the model is usually designed only for performance instead of performance and computing power consideration, which is applicable for devices with limited computing power. In this paper, we proposed a lightweight residual network with pyramid attention for person re-identification problems. The lightweight residual network adopted from the residual network (ResNet) model used for CIFAR dataset experiments consists of not more than two million parameters. An additional pyramid features extraction network and attention module are added to the network to improve the classifier's performance. We use CPFE (Context-aware Pyramid Features Extraction) network that utilizes atrous convolution with different dilation rates to extract the pyramid features. In addition, two different attention networks are used for the classifier: channel-wise and spatial-based attention networks. The proposed classifier is tested using widely use Market-1501 and DukeMTMC-reID person re-identification datasets. Experiments on Market-1501 and DukeMTMC-reID datasets show that our proposed classifier can perform well and outperform the classifier without CPFE and attention networks. Further investigation and ablation study shows that our proposed classifier has higher information density compared with other person re-identification methods.
Detection of multi-class arrhythmia using heuristic and deep neural network on edge device Arief Kurniawan; Eko Mulyanto Yuniarno; Eko Setijadi; Mochamad Yusuf Alsagaff; Gijsbertus Jacob Verkerke; I Ketut Eddy Purnama
International Journal of Advances in Intelligent Informatics Vol 9, No 3 (2023): November 2023
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/ijain.v9i3.1061

Abstract

Heart disease is a heart condition that sometimes causes a person to die suddenly. One indication is a rhythm disorder known as arrhythmia. Multi-class Arrhythmia Detection has followed: QRS complex detection procedure and arrhythmia classification based on the QRS complex morphology. We proposed an edge device that detects QRS complexes based on variance analysis (QVAT) and the arrhythmia classification based on the QRS complex spectrogram. The classifier uses two-dimensional convolutional neural network (2D CNN) deep learning. We use a single board computer and neural network compute stick to implement the edge device. The outcomes are a prototype device cardiologists use as a supporting tool for analysing ECG signals, and patients can also use it for self-tests to figure out their heart health. To evaluate the performance of our edge device, we tested using the MIT-BIH database because other methods also use the data. The QVAT sensitivity and predictive positive are 99.81% and 99.90%, respectively. Our classifier's accuracy, sensitivity, predictive positive, specificity, and F1-score are 99.82%, 99.55%, 99.55%, 99.89%, and 99.55%, respectively. The experiment result of arrhythmia classification shows that our method outperforms the others. Still, for r-peak detection, the QVAT implemented in an edge device is comparable to the other methods. In future work, we can improve the performance of r-peak detection using the double-check algorithm in QVAT and cross-check the QRS complex detection by adding 1 class to the classifier, namely the non-QRS class.
Co-Authors Abd Rahman Adhi Dharma Wibawa Adi Sutanto Ahmad Zaini Ahsan Ahsan Ait-Souar, Iliès Alamsyah Alamsyah - Alamsyah Alamsyah Andi Kurniawan Nugroho Arham Arham, Arham Arina Qona'ah Asayanda, Fikra Agha Rabbani Bernaridho Hutabarat, Bernaridho Boedinugroho, Hanny Budi Nur Iman Budi Santoso Catur Supriyanto Chastine Fatichah Dian Ratnawati Diana Purwitasari Dinar Mutiara Kusumo Nugraheni Effendy Hadi Sutanto Eka Dwi Nurcahya Eko Mulyanto Yuniarno Eko Mulyanto Yuniarno Elly Purwantini Endang Sri Rahayu Esther Irawati Setiawan Filiazsanti, Almira Firman Arifin Gijsbertus Jacob Verkerke Gijsbertus Jacob Verkerke Guruh Fajar Shidik Gusmaniarti, Gusmaniarti Handayeni, Ketut Dewi Martha Erli Hartarto Junaedi Hermawan, Norma Hernanda, Arta Kusuma Hidayat Arifin I Made Gede Sunarya Ida Hastuti Ima Kurniastuti Iman Fahruzi Ingrid Nurtanio Ismoyo Sunu Isturom Arif Jaya Pranata Joko Priambodo Juanita, Safitri Khakim Ghozali Kristian, Yosi Kurniawan, Arief Lilik Anifah Lukman Affandhy Lukman Zaman Margareta Rinastiti Masy Ari Ulinuha Mauridhi Heri Purnomo Mauridhi Heri Purnomo Mauridhi Hery Purnomo Mauridhi Hery Purnomo Mira Candra Kirana Moch Hariadi Moch Hariadi Mochamad Hariadi Mochamad Hariadi Mochamad Yusuf Alsagaff Mochammad Hariadi Muhammad Anshari Muhammad Hariadi Muhtadin Muhtadin Muhtadin Mulyanto, Eko Munawir . Munawir Munawir Munir, M Syahrul Myrtati Dyah Artaria Nazarrudin, Ahmad Ricky Nofiandri Setyasmara Nursalam . Pramunanto, Eko Priambodo, Joko Prioko, Kentani Langgalih Pulung Nurtantio Andono Putu Gde Ariastita Putu Hendra Suputra R Dimas Adityo Rachmadi, Reza Fuad Raihan, Muhammad Reza Fuad Rachmadi Ricardus Anggi Pramunendar Rifky Octavia Pradipta Rika Rokhana Rika Rokhana Rima Tri Wahyuningrum Rima Tri Wahyuningrum Robby Aldriyanto Raffly Rokhana, Rika Rumala, Dewinda Julianensi Saiful Bukhori Saiful Bukhori Sensusiati, Anggraini Dwi Setijadi, Eko Slamet Hartono Stevanus Hardiristanto Stevanus Hardiristanto Stevanus Hardiristanto, Stevanus Sugiyanto - Supeno Mardi Susiki Nugroho, Supeno Mardi Suryo, Yoedo Ageng Terawan Agus Putranto Tita Karlita Tita Karlita Tita Karlita Tomoko Hasegawa Tri Arief Sardjono Wulandari, Ariani Dwi Yosi Kristian Yulis Setiya Dewi Zaimah Permatasari Zaman, Lukman