Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : EMITTER International Journal of Engineering Technology

Classification of Ischemic Stroke with Convolutional Neural Network (CNN) approach on b-1000 Diffusion-Weighted (DW) MRI Andi Kurniawan Nugroho; Dinar Mutiara Kusumo Nugraheni; Terawan Agus Putranto; I Ketut Eddy Purnama; Mauridhi Hery Purnomo
EMITTER International Journal of Engineering Technology Vol 10 No 1 (2022)
Publisher : Politeknik Elektronika Negeri Surabaya (PENS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24003/emitter.v10i1.694

Abstract

When the blood flow to the arteries in brain is blocked, its known as Ischemic stroke or blockage stroke. Ischemic stroke can occur due to the formation of blood clots in other parts of the body. Plaque buildup in arteries, on the other hand, can cause blockages because if it ruptures, it can form blood clots. The b-1000 Diffusion Weighted (DW) Magnetic Resonance Imaging (MRI) image was used in a general examination to obtain an image of the part of the brain that had a stroke. In this study, classifications used several variations of layer convolution to obtain high accuracy and high computational consumption using b-1000 Diffusion Weighted (DW) MR in ischemic stroke types: acute, sub-acute and chronic. Ischemic stroke was classified using five variants of the Convolutional Neural Network (CNN) architectural design, i.e., CNN1–CNN5. The test results show that the CNN5 architectural design provides the best ischemic stroke classification compared to other architectural designs tested, with an accuracy of 99.861%, precision 99.862%, recall 99.861, and F1-score 99.861%.
Lite-FBCN: Lightweight Fast Bilinear Convolutional Network for Brain Disease Classification from MRI Image Rumala, Dewinda Julianensi; Rachmadi, Reza Fuad; Sensusiati, Anggraini Dwi; Purnama, I Ketut Eddy
EMITTER International Journal of Engineering Technology Vol 12 No 2 (2024)
Publisher : Politeknik Elektronika Negeri Surabaya (PENS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24003/emitter.v12i2.853

Abstract

Achieving high accuracy with computational efficiency in brain disease classification from Magnetic Resonance Imaging (MRI) scans is challenging, particularly when both coarse and fine-grained distinctions are crucial. Current deep learning methods often struggle to balance accuracy with computational demands. We propose Lite-FBCN, a novel Lightweight Fast Bilinear Convolutional Network designed to address this issue. Unlike traditional dual-network bilinear models, Lite-FBCN utilizes a single-network architecture, significantly reducing computational load. Lite-FBCN leverages lightweight, pre-trained CNNs fine-tuned to extract relevant features and incorporates a channel reducer layer before bilinear pooling, minimizing feature map dimensionality and resulting in a compact bilinear vector. Extensive evaluations on cross-validation and hold-out data demonstrate that Lite-FBCN not only surpasses baseline CNNs but also outperforms existing bilinear models. Lite-FBCN with MobileNetV1 attains 98.10% accuracy in cross-validation and 69.37% on hold-out data (a 3% improvement over the baseline). UMAP visualizations further confirm its effectiveness in distinguishing closely related brain disease classes. Moreover, its optimal trade-off between performance and computational efficiency positions Lite-FBCN as a promising solution for enhancing diagnostic capabilities in resource-constrained and or real-time clinical environments.
Co-Authors Abd Rahman Adhi Dharma Wibawa Adi Sutanto Ahmad Zaini Ahsan Ahsan Ait-Souar, Iliès Alamsyah Alamsyah - Alamsyah Alamsyah Andi Kurniawan Nugroho Arham Arham, Arham Arina Qona'ah Asayanda, Fikra Agha Rabbani Bernaridho Hutabarat, Bernaridho Boedinugroho, Hanny Budi Nur Iman Budi Santoso Catur Supriyanto Chastine Fatichah Dian Ratnawati Diana Purwitasari Dinar Mutiara Kusumo Nugraheni Effendy Hadi Sutanto Eka Dwi Nurcahya Eko Mulyanto Yuniarno Eko Mulyanto Yuniarno Elly Purwantini Endang Sri Rahayu Esther Irawati Setiawan Filiazsanti, Almira Firman Arifin Gijsbertus Jacob Verkerke Gijsbertus Jacob Verkerke Guruh Fajar Shidik Gusmaniarti, Gusmaniarti Handayeni, Ketut Dewi Martha Erli Hartarto Junaedi Hermawan, Norma Hernanda, Arta Kusuma Hidayat Arifin I Made Gede Sunarya Ida Hastuti Ima Kurniastuti Iman Fahruzi Ingrid Nurtanio Ismoyo Sunu Isturom Arif Jaya Pranata Joko Priambodo Juanita, Safitri Khakim Ghozali Kristian, Yosi Kurniawan, Arief Lilik Anifah Lukman Affandhy Lukman Zaman Margareta Rinastiti Masy Ari Ulinuha Mauridhi Heri Purnomo Mauridhi Heri Purnomo Mauridhi Hery Purnomo Mauridhi Hery Purnomo Mira Candra Kirana Moch Hariadi Moch Hariadi Mochamad Hariadi Mochamad Hariadi Mochamad Yusuf Alsagaff Mochammad Hariadi Muhammad Anshari Muhammad Hariadi Muhtadin Muhtadin Muhtadin Mulyanto, Eko Munawir . Munawir Munawir Munir, M Syahrul Myrtati Dyah Artaria Nazarrudin, Ahmad Ricky Nofiandri Setyasmara Nursalam . Pramunanto, Eko Priambodo, Joko Prioko, Kentani Langgalih Pulung Nurtantio Andono Putu Gde Ariastita Putu Hendra Suputra R Dimas Adityo Rachmadi, Reza Fuad Raihan, Muhammad Reza Fuad Rachmadi Ricardus Anggi Pramunendar Rifky Octavia Pradipta Rika Rokhana Rika Rokhana Rima Tri Wahyuningrum Rima Tri Wahyuningrum Robby Aldriyanto Raffly Rokhana, Rika Rumala, Dewinda Julianensi Saiful Bukhori Saiful Bukhori Sensusiati, Anggraini Dwi Setijadi, Eko Slamet Hartono Stevanus Hardiristanto Stevanus Hardiristanto Stevanus Hardiristanto, Stevanus Sugiyanto - Supeno Mardi Susiki Nugroho, Supeno Mardi Suryo, Yoedo Ageng Terawan Agus Putranto Tita Karlita Tita Karlita Tita Karlita Tomoko Hasegawa Tri Arief Sardjono Wulandari, Ariani Dwi Yosi Kristian Yulis Setiya Dewi Zaimah Permatasari Zaman, Lukman