p-Index From 2021 - 2026
6.816
P-Index
Claim Missing Document
Check
Articles

Found 5 Documents
Search
Journal : Jurnal Buana Informatika

Optimasi Pembobotan pada Query Expansion dengan Term Relatedness to Query-Entropy based (TRQE) Ludviani, Resti; Hayati, Khadijah F.; Arifin, Agus Zainal; Purwitasari, Diana
Jurnal Buana Informatika Vol 6, No 3 (2015): Jurnal Buana Informatika Volume 6 Nomor 3 Juli 2015
Publisher : Universitas Atma Jaya Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (297.228 KB)

Abstract

Abstract. An appropriate selection term for expanding a query is very important in query expansion. Therefore, term selection optimization is added to improve query expansion performance on document retrieval system. This study proposes a new approach named Term Relatedness to Query-Entropy based (TRQE) to optimize weight in query expansion by considering semantic and statistic aspects from relevance evaluation of pseudo feedback to improve document retrieval performance. The proposed method has 3 main modules, they are relevace feedback, pseudo feedback, and document retrieval. TRQE is implemented in pseudo feedback module to optimize weighting term in query expansion. The evaluation result shows that TRQE can retrieve document with the highest result at precission of 100% and recall of 22,22%. TRQE for weighting optimization of query expansion is proven to improve retrieval document.     Keywords: TRQE, query expansion, term weighting, term relatedness to query, relevance feedback Abstrak..Pemilihan term yang tepat untuk memperluas queri merupakan hal yang penting pada query expansion. Oleh karena itu, perlu dilakukan optimasi penentuan term yang sesuai sehingga mampu meningkatkan performa query expansion pada system temu kembali dokumen. Penelitian ini mengajukan metode Term Relatedness to Query-Entropy based (TRQE), sebuah metode untuk mengoptimasi pembobotan pada query expansion dengan memperhatikan aspek semantic dan statistic dari penilaian relevansi suatu pseudo feedback sehingga mampu meningkatkan performa temukembali dokumen. Metode yang diusulkan memiliki 3 modul utama yaitu relevan feedback, pseudo feedback, dan document retrieval. TRQE diimplementasikan pada modul pseudo feedback untuk optimasi pembobotan term pada ekspansi query. Evaluasi hasil uji coba menunjukkan bahwa metode TRQE dapat melakukan temukembali dokumen dengan hasil terbaik pada precision  100% dan recall sebesar 22,22%.Metode TRQE untuk optimasi pembobotan pada query expansion terbukti memberikan pengaruh untuk meningkatkan relevansi pencarian dokumen.Kata Kunci: TRQE, ekspansi query, pembobotan term, term relatedness to query, relevance feedback
Optimasi Pembobotan pada Query Expansion dengan Term Relatedness to Query-Entropy based (TRQE) Ludviani, Resti; Hayati, Khadijah F.; Arifin, Agus Zainal; Purwitasari, Diana
Jurnal Buana Informatika Vol 6, No 3 (2015): Jurnal Buana Informatika Volume 6 Nomor 3 Juli 2015
Publisher : Universitas Atma Jaya Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (297.228 KB) | DOI: 10.24002/jbi.v6i3.433

Abstract

Abstract. An appropriate selection term for expanding a query is very important in query expansion. Therefore, term selection optimization is added to improve query expansion performance on document retrieval system. This study proposes a new approach named Term Relatedness to Query-Entropy based (TRQE) to optimize weight in query expansion by considering semantic and statistic aspects from relevance evaluation of pseudo feedback to improve document retrieval performance. The proposed method has 3 main modules, they are relevace feedback, pseudo feedback, and document retrieval. TRQE is implemented in pseudo feedback module to optimize weighting term in query expansion. The evaluation result shows that TRQE can retrieve document with the highest result at precission of 100% and recall of 22,22%. TRQE for weighting optimization of query expansion is proven to improve retrieval document.     Keywords: TRQE, query expansion, term weighting, term relatedness to query, relevance feedback Abstrak..Pemilihan term yang tepat untuk memperluas queri merupakan hal yang penting pada query expansion. Oleh karena itu, perlu dilakukan optimasi penentuan term yang sesuai sehingga mampu meningkatkan performa query expansion pada system temu kembali dokumen. Penelitian ini mengajukan metode Term Relatedness to Query-Entropy based (TRQE), sebuah metode untuk mengoptimasi pembobotan pada query expansion dengan memperhatikan aspek semantic dan statistic dari penilaian relevansi suatu pseudo feedback sehingga mampu meningkatkan performa temukembali dokumen. Metode yang diusulkan memiliki 3 modul utama yaitu relevan feedback, pseudo feedback, dan document retrieval. TRQE diimplementasikan pada modul pseudo feedback untuk optimasi pembobotan term pada ekspansi query. Evaluasi hasil uji coba menunjukkan bahwa metode TRQE dapat melakukan temukembali dokumen dengan hasil terbaik pada precision  100% dan recall sebesar 22,22%.Metode TRQE untuk optimasi pembobotan pada query expansion terbukti memberikan pengaruh untuk meningkatkan relevansi pencarian dokumen.Kata Kunci: TRQE, ekspansi query, pembobotan term, term relatedness to query, relevance feedback
Deteksi Bot Spammer pada Twitter Berbasis Sentiment Analysis dan Time Interval Entropy Aditya, Christian Sri Kusuma; Hani’ah, Mamluatul; Fitrawan, Alif Akbar; Arifin, Agus Zainal; Purwitasari, Diana
Jurnal Buana Informatika Vol 7, No 3 (2016): Jurnal Buana Informatika Volume 7 Nomor 3 Juli 2016
Publisher : Universitas Atma Jaya Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (456.068 KB) | DOI: 10.24002/jbi.v7i3.656

Abstract

Abstract. Spam is an abuse of messaging undesired by recipients. Those who send spam are called spammers.  Popularity of Twitter has attracted spammers to use it as a means to disseminate spam messages. The spams are characterized by a neutral emotional sentiment or no particular users’ preference perspective. In addition, the regularity of tweeting behavior periodically shows automation performed by bot. This study proposes a new method to differentiate between bot spammer and legitimate user accounts by integrating the sentiment analysis (SA) based on emotions and time interval entropy (TIE). The combination of knowledge-based and machine learning-based were used to classify tweets with positive, negative and neutral sentiments. Furthermore, the collection of timestamp is used to calculate the time interval entropy of each account. The results show that the precision and recall of the proposed method reach up to 83% and 91%. This proves that the merging SA and TIE can optimize overall system performance in detecting Bot Spammer.Keywords: bot spammer, twitter, sentiment analysis, polarity, entropy Abstrak. Spam merupakan penyalahgunaan pengiriman pesan tanpa dikehendaki oleh penerimanya, orang yang mengirimkan spam disebut spammer. Ketenaran Twitter mengundang spammer untuk menggunakannya sebagai sarana menyebarluaskan pesan spam. Karakteristik dari tweet yang dikategorikan spam memiliki sentimen emosi netral atau tidak ada preferensi tertentu terhadap suatu perspektif dari user yang memposting tweet. Selain itu keteraturan waktu perilaku saat memposting tweet secara periodik menunjukkan otomatisasi yang dilakukan bot. Pada penelitian ini diusulkan metode baru untuk mendeteksi antara bot spammer dan legitimate user dengan mengintegrasikan sentimen analysis berdasarkan emosi dan time interval entropy. Pendekatan gabungan knowledge-based dan machine learning-based digunakan untuk mengklasifikasi tweet yang memiliki sentimen positif, negatif dan tweet netral. Selanjutnya kumpulan timestamp digunakan untuk menghitung time interval entropy dari tiap akun. Hasil percobaan menunjukan bahwa precision dan recall dari metode yang diusulkan mencapai 83% dan 91%. Hal ini membuktikan penggabungan Sentiment Analysis (SA) dan Time Interval Entropy (TIE) dapat mengoptimalkan performa sistem secara keseluruhan dalam mendeteksi Bot Spammer.Kata Kunci:  bot spammer, twitter, sentiment analysis,  polarity, entropy
Peringkasan Dokumen Berbahasa Inggris Menggunakan Sebaran Local Sentence Wahib, Aminul; Arifin, Agus Zainal; Purwitasari, Diana
Jurnal Buana Informatika Vol 7, No 1 (2016): Jurnal Buana Informatika Volume 7 Nomor 1 Januari 2016
Publisher : Universitas Atma Jaya Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (353.749 KB) | DOI: 10.24002/jbi.v7i1.482

Abstract

Abstract. The number of digital documents grows very rapidly causing time waste in searching and reading the information. To overcome these problems, many document summary methods are developed to find important or key sentences from the source document. This study proposes a new strategy in summarizing English document by using local sentence distribution method to find and dig up hidden important sentence from the source document in an effort to improve quality of the summaries. Experiments are conducted on dataset DUC 2004 task 2. Measurement ROUGE-1 and ROUGE-2 are employed as a performance evaluation of the proposed method with sentence information density and sentence cluster keyword (SIDeKiCK). The experiment shows that the proposed method has better performance with an average achievement ROUGE-1 0.398, an increase of 1.5% compared to SIDeKiCK method and ROUGE-2 0.12, an increase 13% compared to SIDeKiCK method.Keywords: Summarize Document, Important Sentences, Distribution of Local Sentence, ROUGE. Abstrak. Jumlah dokumen digital yang berkembang sangat pesat menyebabkan banyaknya waktu terbuang dalam mencari dan membaca informasi. Untuk mengatasi permasalahan tersebut banyak dikembangkan metode peringkasan dokumen yang diharapkan mampu menemukan kalimat-kalimat penting dari dokumen sumber. Penelitian ini mengajukan strategi baru peringkasan dokumen berbahasa inggris menggunakan metode sebaran local sentence untuk mencari dan menggali kalimat penting yang tersembunyi dalam dokumen sumber sebagai upaya untuk meningkatkan kualitas hasil ringkasan. Uji coba dilakukan terhadap dataset task 2 DUC 2004. Pengukuran ROUGE-1 dan ROUGE-2 digunakan sebagai evaluasi performa metode yang diusulkan dengan metode lain yaitu metode sentence information density dan kata kunci cluster kalimat (SIDeKiCK). Hasil ujicoba didapatkan bahwa metode yang diusulkan memiliki performa lebih baik dengan capaian rata-rata ROUGE-1 0,398, meningkat 1,5% dibanding metode SIDeKiCK dan ROUGE-2 0,12 meningkat 13% dibanding metode SIDeKiCK.Kata Kunci: Peringkasan Dokumen, Kalimat Penting, Sebaran Local Sentence, ROUGE.
Peringkasan Dokumen Berbahasa Inggris Menggunakan Sebaran Local Sentence Aminul Wahib; Agus Zainal Arifin; Diana Purwitasari
Jurnal Buana Informatika Vol. 7 No. 1 (2016): Jurnal Buana Informatika Volume 7 Nomor 1 Januari 2016
Publisher : Universitas Atma Jaya Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24002/jbi.v7i1.482

Abstract

Abstract. The number of digital documents grows very rapidly causing time waste in searching and reading the information. To overcome these problems, many document summary methods are developed to find important or key sentences from the source document. This study proposes a new strategy in summarizing English document by using local sentence distribution method to find and dig up hidden important sentence from the source document in an effort to improve quality of the summaries. Experiments are conducted on dataset DUC 2004 task 2. Measurement ROUGE-1 and ROUGE-2 are employed as a performance evaluation of the proposed method with sentence information density and sentence cluster keyword (SIDeKiCK). The experiment shows that the proposed method has better performance with an average achievement ROUGE-1 0.398, an increase of 1.5% compared to SIDeKiCK method and ROUGE-2 0.12, an increase 13% compared to SIDeKiCK method.Keywords: Summarize Document, Important Sentences, Distribution of Local Sentence, ROUGE. Abstrak. Jumlah dokumen digital yang berkembang sangat pesat menyebabkan banyaknya waktu terbuang dalam mencari dan membaca informasi. Untuk mengatasi permasalahan tersebut banyak dikembangkan metode peringkasan dokumen yang diharapkan mampu menemukan kalimat-kalimat penting dari dokumen sumber. Penelitian ini mengajukan strategi baru peringkasan dokumen berbahasa inggris menggunakan metode sebaran local sentence untuk mencari dan menggali kalimat penting yang tersembunyi dalam dokumen sumber sebagai upaya untuk meningkatkan kualitas hasil ringkasan. Uji coba dilakukan terhadap dataset task 2 DUC 2004. Pengukuran ROUGE-1 dan ROUGE-2 digunakan sebagai evaluasi performa metode yang diusulkan dengan metode lain yaitu metode sentence information density dan kata kunci cluster kalimat (SIDeKiCK). Hasil ujicoba didapatkan bahwa metode yang diusulkan memiliki performa lebih baik dengan capaian rata-rata ROUGE-1 0,398, meningkat 1,5% dibanding metode SIDeKiCK dan ROUGE-2 0,12 meningkat 13% dibanding metode SIDeKiCK.Kata Kunci: Peringkasan Dokumen, Kalimat Penting, Sebaran Local Sentence, ROUGE.
Co-Authors Abdillah, Abid Famasya Abdillah, Surya Abid Famasya Abdillah Achmad Affandi Adhi Nurilham Adi Surya Suwardi Ansyah Adillion, Ilham Gurat Adni Navastara, Dini Agus Budi Raharjo Agus Budi Raharjo Agus Zainal Arifin Agus Zainal Arifin Ahmad Syauqi Ahmad Syauqi Aida Muflichah Akwila Feliciano Akwila Feliciano Alif Akbar Fitrawan, Alif Akbar Alqis Rausanfita Aminul Wahib Aminul Wahib Aminul Wahib Andrea Bemantoro J Apriantoni Apriantoni Apriantoni, Apriantoni Ardianto Ardianto Ariadi Retno Tri Hayati Arief Rahman Arif Fadllullah Arijal Ibnu Jati Arini Rosyadi Ario Bagus Nugroho Arrie Kurniawardhani Arya Putra Kurniawan Asiyah Nur Kholifah Atikah, Luthfi Bambang Setiawan Baskoro Adi Pratomo Baskoro, Fajar Benito, Davian Budi Pangestu Budi Rahardjo Budi Raharjo, Agus Budiyono, Yanuardhi Arief Buliali, Joko Lianto Cahyaningtyas, Zakiya Azizah Chastine Fatichah Chilyatun Nisa, Chilyatun Christian Sri kusuma Aditya, Christian Sri kusuma Cornelius Bagus Purnama Putra Damayanti, Putri Daniel Swanjaya Dasrit Debora Kamudi Dhian Kartika Dini Adni Navastara, Dini Adni Dwi Sunaryono Dwi Sunaryono Edy Sukotjo Eko Riduwan Elshe Erviana Angely Erlinda Argyanti Nugraha Erlinda Argyanti Nugraha F.X. Arunanto Fahmi Amiq Fajar Baskoro Fajar Baskoro Falach Asy'ari, Misbachul Fandy Kuncoro Adianto Fandy Kuncoro Adianto Faried Effendy Febri Fernanda Fransiscus Xaverius Arunanto Galih Hendra Wibowo Ginardi, Raden Venantius Hari Glory Intani Pusposari Gurat Adillion, Ilham Gus Nanang Syaifuddiin Hadziq Fabroyir Hafidz, Abdan Hamidi, Mohammad Zaenuddin Handayani Tjandrasa Haniefardy, Addien Hanif Affandi Hartanto Haykal, Muhammad Farhan Herdayanto Sulistyo Putro Hilya Tsaniya Hilya Tsaniya Hudan Studiawan Husna, Farida Amila I Ketut Eddy Purnama I Made Satria Bimantara Ilmi, Akhmad Bakhrul Imam Santosa Indra Lukmana Irdayanti, Marina Ivonne Soejitno Juanita, Safitri Juanita, Safitri Juli Purwanto Kardawi, Muhammad Yusuf Kautsar, Faiz Kevin Christian Hadinata Kevin Christian Hadinata Khadijah F. Hayati Kurnia Aji Tritamtama Lailatul Hidayah M. Abdillah M. Abdul Wakhid Mabahist, Fahril Maheswari, Clarissa Luna Mamluatul Hani’ah Mauridhi Hery Purnomo Mirza Hamdhani Misbakhul Munir Irfan Subakti Mohamad Anwar Syaefudin Muhamad Nasir Muhammad Abdul Wakhid Muhammad Jerino Gorter Muhammad Machmud Muhammad Mirza Muttaqi Nabila Puspita Firdi Nada Fitrieyatul Hikmah Nanik Suciati Narandha Arya Ranggianto Nova Rijati Novemi Uki A Novrindah Alvi Hasanah Nur Azizah, Anisa Nur Hayatin Nurilham, Adhi Oktaviandra Pradita Putri Oktaviandra Pradita Putri, Oktaviandra Pradita Paramastri Ardiningrum Putu Praba Santika Putu Yuwono Kusmawan Raihan, Muhammad Rangga Kusuma Dinata Rangga Kusuma Dinata Ratih Nur Esti Anggraini, Ratih Nur Esti Rendra Dwi Lingga P. Resti Ludviani Rio Indralaksono Rizal Setya Perdana Rizka Sholikah Rizka Wakhidatus Sholikah Rizka Wakhidatus Sholikah, Rizka Wakhidatus Rizqa Afthoni Rozi, Fahrur RR. Ella Evrita Hestiandari Rully Soelaiman Rully Sulaiman Ryfial Azhar, Ryfial Safhira Maharani Safhira Maharani Safitri, Julia Salim Bin Usman Salim Bin Usman Salsabila Mazya Permataning Tyas Salsabila Salsabila Satrio Hadi Wijoyo Satrio Verdianto Satrio Verdianto Sembiring, Fred Erick Septiyan Andika Isanta Septiyan Andika Isanta Septiyawan Rosetya Wardhana Septiyawan Rosetya Wardhana Sherly Rosa Anggraeni Sherly Rosa Anggraeni Sidharta, Bayu Adjie Sihombing, Drigo Alexander Siti Rochimah Stefani Tasya Hallatu Surya Sumpeno Suwida, Katon Syadza Anggraini Tanzilal Mustaqim Tegar Rachman Muzzammil Tesa Eranti Putri Tri Arief Sardjono Tsabbit Aqdami Mukhtar, Tsabbit Aqdami Umy Rizqi Verdianto, Satrio Victor Hariadi Vit Zuraida Wardhana, Septiyawan R. Wardhana, Septiyawan Rosetya Wicaksono, Farhan Wijayanti Nurul Khotimah Wijoyo, Satrio Hadi Windy Deftia Mertiana Wisma Dwi Prastya, Ifnu Wulansari Wulansari Yasinta Romadhona Yatestha, Anak Agung Yoga Yustiawan Yonathan, Vincent Yufis Azhar Yuhana, Umi Laili Yulia Niza Yulia Niza Yulian Findawati Yunianto, Dika R. Zahrul Zizki Dinanto Zakiya Azizah Cahyaningtyas Zakiya Azizah Cahyaningtyas