Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : Journal of Intelligent Decision Support System (IDSS)

Comparison of coronary heart disease prediction using basic model and ensemble learning Rachmat, Rachmat; Iskandar, Syamsul Bhahri; Kasmawaru, Kasmawaru; Suherwin, Suherwin
Journal of Intelligent Decision Support System (IDSS) Vol 8 No 2 (2025): June: Intelligent Decision Support System (IDSS)
Publisher : Institute of Computer Science (IOCS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35335/idss.v8i2.298

Abstract

Coronary heart disease (CHD) remains one of the leading causes of death worldwide, highlighting the urgent need for accurate early detection. This study aims to compare the performance of various machine learning models—including Decision Tree, K-Nearest Neighbor (KNN), Logistic Regression, Random Forest, XGBoost, and Stacking Ensemble—in predicting CHD using the UCI Heart Disease Dataset. The models were evaluated using five metrics: accuracy, precision, recall, F1-score, and AUC. The results indicate that Stacking and Logistic Regression achieved the highest AUC scores (0.80), while XGBoost obtained the best F1-score (0.40). Simpler models such as Decision Tree and KNN showed relatively lower performance. In addition, feature importance analysis using permutation methods revealed that features like number of major vessels (ca), thalassemia (thal), ST depression (oldpeak), and age play a critical role in prediction accuracy. These findings demonstrate that ensemble learning approaches, especially Stacking and XGBoost, can effectively improve diagnostic performance and offer strong potential for clinical decision support systems (CDSS) in the early detection of coronary heart disease.