Claim Missing Document
Check
Articles

Bilangan Invers Dominasi Total Pada Triangular Snake Graph, Line Triangular Snake Graph, dan Shadow Triangular Snake Graph Nurhamzah Nurhamzah; Nilamsari Kusumastuti; Fransiskus Fran
Jambura Journal of Mathematics Vol 4, No 2: July 2022
Publisher : Department of Mathematics, Universitas Negeri Gorontalo

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1472.398 KB) | DOI: 10.34312/jjom.v4i2.14176

Abstract

Let G = (V(G), E(G)) be a connected graph, where V(G) is the set of vertices and E(G) is the set of edges. The set Dt(G) is called the total domination set in G if every vertex v 2 V(G) is adjacent to at least one vertex in Dt (G). Furthermore, Dt(G) must satisfy the property N(Dt ) = V(G), where N(Dt) is an open neighbourhood set of Dt(G). Suppose that Dt(G) is the total domination set with minimum cardinality. If V(G) - Dt(G) contains a total domination set Dt-1(G), then Dt-1(G) is the inverse set of total domination relative to the total domination set Dt (G). The inverse’s number of the total domination set denotes the minimum cardinality of the inverse set of total domination. This number is denoted by gt-1 (G). This article discusses the inverse’s number of total domination of the triangular snake graph (Tn), line triangular snake graph (L (Tn)), and shadow triangular snake graph (D2 (Tn)). Graph Tn is a graph obtained from the path graph (Pn) by replacing each side of the path with a cycle graph (C3). Graph L (Tn) is a graph where the vertex set in L(Tn) is the edge set on Tn, or V(L(Tn)) = E(Tn). Graph D2 (Tn) is a graph obtained by combining two copies of a graph Tn, namely Tn0 and T00n. This research shows that the graph Tn does not have an inverse of domination total, gt-1 (L (Tn)) = n for n = 4, 6, 8, gt-1 (L (Tn)) = n - 1 for n = 3, 5, 7, or n ≥ 9 with n 2 N, and gt-1 (D2 (Tn)) = b23nc for n ≥ 3 with n 2 N.
BILANGAN INVERS DOMINASI TOTAL PADA GRAF BUNGA DAN GRAF TRAMPOLIN Febby Desy Lia; Nilamsari Kusumastuti; Fransiskus Fran
EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN Vol. 16(1), 2022
Publisher : Mathematics Study Program, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (498.152 KB) | DOI: 10.20527/epsilon.v16i1.5160

Abstract

Given a simple, finite, undirected and contains no isolated vertices graph , with  is the set of vertices in  and  is the set of edges in . The set  is called the dominating set in  if for every vertex of  is adjacent to at least one vertex in . The set  is called the total dominating set in graph  if for every vertex in  is adjacent to at least one vertices in . If  is the total domination set with minimum cardinality of the graph  and  contains another total domination set, for example , then  is called the inverse set of total domination respect to . The minimum cardinality of an inverse set of total domination is called the inverse of total domination number which is denoted by .The set of domination and total domination is not singular. A graph that has a total domination set does not necessarily have a inverse total domination set. In this study, exact values are found of , and  and,, n is even and , where be a flower graph and T<span style='font-size:10.0pt;mso-ansi-font-siz
BILANGAN INVERS DOMINASI TOTAL GRAF HELM TERTUTUP, GRAF GEAR, GRAF RODA GANDA DAN GRAF ANTIWEB-GEAR Nilamsari Kusumastuti; Fransiskus Fran
Teorema: Teori dan Riset Matematika Vol 7, No 2 (2022): September
Publisher : Universitas Galuh

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25157/teorema.v7i2.7211

Abstract

Artikel ini membahas tentang bilangan invers dominasi total pada suatu graf  yang merupakan graf sederhana, berhingga, tak berarah dan tidak memuat simpul terasing, dengan  adalah himpunan titik dan  adalah himpunan sisi. Himpunan  adalah himpunan dominasi di  jika setiap elemen di  bertetangga sedikitnya dengan satu simpul di . Jika , maka  disebut himpunan dominasi total. Himpunan dominasi dan dominasi total tidak tunggal. Dimisalkan  merupakan himpunan dominasi total dengan kardinalitas terkecil. Jika  memuat himpunan dominasi total  maka  disebut himpunan invers dominasi total. Kardinalitas terkecil dari himpunan invers dominasi total disebut bilangan invers dominasi total yang dilambangkan . Suatu graf yang mempunyai himpunan dominasi total belum tentu memiliki himpunan invers dominasi total. Untuk kasus tersebut, bilangan invers dominasi total juga tidak dapat ditentukan. Pada artikel ini, ditentukan bilangan invers dominasi total dari beberapa kelas graf yaitu graf helm tertutup, graf gear, graf roda ganda dan graf antiweb-gear.
Pelatihan Pembuatan Ujian Online dengan Memanfaatkan Google Form untuk MGMP Matematika SMP Kabupaten Kubu Raya Meliana Pasaribu; Evi Noviani; Yundari Yundari; Mariatul Kiftiah; Helmi Helmi; Nilamsari Kusumastuti; Bayu Prihandono; Yudhi Yudhi; Fransiskus Fran; Nur’ainul Miftahul Huda
GERVASI: Jurnal Pengabdian kepada Masyarakat Vol 6, No 3 (2022): GERVASI: Jurnal Pengabdian Kepada Masyarakat
Publisher : LPPM IKIP PGRI Pontianak

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31571/gervasi.v6i3.4070

Abstract

Pendidikan di era industri 4.0 dituntut untuk merespons kebutuhan revolusi industri dengan penyesuaian kurikulum baru, yakni kurikulum yang mampu membuka jendela dunia dengan memanfaatkan internet of things (IoT). Tersedianya teknologi yang mudah untuk digunakan, murah, serta didukung oleh koneksi internet yang stabil menjadi penunjang pendidikan. Salah satu perangkat lunak yang mudah diakses, tidak berbayar, mudah untuk digunakan, serta sederhana dalam pengoperasiannya adalah Google Form. Namun, beberapa guru mengalami kesulitan saat menyusun soal matematika yang memuat persamaan, fungsi dan grafik. Oleh karena itu melalui pelatihan ini diharapkan mampu memperkenalkan dan memberikan informasi kepada guru terkait pembuatan soal ujian matematika dengan menggunakan Google Form dengan extension EquatIO. Pelaksanaan pembuatan soal ujian online dengan memanfaatkan Google Form dimulai dengan pemaparan tentang persiapan Google Form menjadi Form Ujian, dilanjutkan dengan Pelatihan pembuatan/penginputan soal ujian Matematika. Berdasarkan hasil evaluasi sebagian besar peserta mengalami peningkatan nilai yang cukup signifikan dari pre-test dan posttest. Selain itu, berdasarkan hasil survey tanggapan, para peserta merasa puas dan berharap kegiatan pelatihan serupa selalu dilaksanakan secara berkelanjutan.
Pelatihan Akurasi Visualisasi Grafik Menggunakan Aplikasi Desmos untuk MGMP Matematika SMP dan SMA Kubu Raya Bayu Prihandono; Yundari Yundari; Nilamsari Kusumastuti; Yudhi Yudhi; Mariatul Kiftiah; Meliana Pasaribu; Nur’ainul Miftahul Huda; Fansiskus Fran; Helmi Helmi; Evi Novian
GERVASI: Jurnal Pengabdian kepada Masyarakat Vol 6, No 3 (2022): GERVASI: Jurnal Pengabdian Kepada Masyarakat
Publisher : LPPM IKIP PGRI Pontianak

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31571/gervasi.v6i3.4318

Abstract

Pelatihan ini bertujuan mengenalkan aplikasi matematika berbasis internet kepada guru-guru MGMP Matematika sehingga dapat meningkatkan kemampuan penggunaan software matematika untuk menunjang proses pembelajaran dan penelitian bagi guru-guru matematika. Kegiatan ini dilaksanakan dari bulan Mei hingga Juni 2022 dengan tahapan meliputi perencanaan, pelaksanaan dan evaluasi. Pelatihan dilaksanakan di ruang konferensi Hotel Mercure Pontianak. Metode yang digunakan dalam pelatihan ini adalah ceramah, demonstrasi dan diskusi. Agar dapat mengikuti pelatihan dengan baik, peserta diberikan modul pelatihan yang telah disiapkan oleh nara sumber. Melalui kegiatan ini guru-guru diberikan pengetahuan untuk mengoperasikan dan memanfaatkan aplikasi DESMOS sebagai media pembelajaran. Tingkat keberhasilan pelatihan diukur dari nilai pre-test dan posttest yang diberikan pada 50 peserta yang hadir. Hasil pengabdian menunjukkan bahwa terdapat peningkatan guru dalam menggunakan software matematika dalam menunjang proses pembelajaran dan penelitian matematika
Pelatihan Visualisasi Materi Ajar Matematika dengan Geogebra untuk Mahasiswa Pendidikan Matematika STKIP Pamane Talino Landak Fransiskus Fran; Mariatul Kiftiah; Meliana Pasaribu; Yudhi Yudhi; Nur’ainul Miftahul Huda; Helmi Helmi; Evi Noviani; Yundari Yundari; Nilamsari Kusumastuti; Bayu Prihandono
GERVASI: Jurnal Pengabdian kepada Masyarakat Vol 6, No 2 (2022): GERVASI: Jurnal Pengabdian Kepada Masyarakat
Publisher : LPPM IKIP PGRI Pontianak

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31571/gervasi.v6i2.3261

Abstract

Penggunaan media pembelajaran berbasis teknologi sangat mendukung proses pembelajaran di masa pandemi. Pada kegiatan ini diberikan pelatihan visualisasi materi ajar matematika untuk mahasiswa pendidikan matematika STKIP Pamane Talino Landak menggunakan software GeoGebra. Pelatihan bertujuan untuk memberikan pengetahuan dan melatih skill penggunaan software matematika untuk menunjang perkuliahan dan bekal setelah lulus bagi mahasiswa. Tahapan kegiatan meliputi perencanaan, pelaksanaan dan evaluasi. Pelatihan pada kegiatan ini dilaksanakan secara daring menggunakan aplikasi Zoom Meeting. Metode yang digunakan dalam pelatihan ini adalah ceramah, demonstrasi dan diskusi. Selain itu, peserta juga diberikan modul pelatihan, sehingga setelah pelatihan peserta diharapkan dapat mengembangkan penggunaan pada materi lainnya yang terkait. Melalui kegiatan ini mahasiswa diberikan bekal untuk mengoperasikan, menggunakan dan memanfaatkan aplikasi open source GeoGebra sebagai media pembelajaran. Sedangkan untuk mengukur tingkat keberhasilan pelatihan, diberikan pre-test dan posttest pada 64 peserta yang hadir. Berdasarkan uji statistik sederhana yang digunakan yaitu paired sample t-test, dapat disimpulkan bahwa, terdapat perbedaan (kenaikan) nilai pre-test ke posttest. Hal ini berarti adanya peningkatan pengetahuan mahasiswa setelah dilakukannya pelatihan.
SPEKTRUM ADJACENCY DARI GRAF BINTANG, GRAF MAHKOTA, DAN GRAF TANGGA Yani Agustina; Nilamsari Kusumastuti; Fransiskus Fran
Bimaster : Buletin Ilmiah Matematika, Statistika dan Terapannya Vol 11, No 2 (2022): Bimaster : Buletin Ilmiah Matematika, Statistika dan Terapannya
Publisher : FMIPA Universitas Tanjungpura

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26418/bbimst.v11i02.53668

Abstract

Suatu graf G dapat disajikan dalam berbagai bentuk, antara lain dalam bentuk geometrik, dalam bentuk himpunan, dan dalam bentuk matriks yang memuat informasi tentang ikatan di antara titik-titiknya. Bentuk matriks dari suatu graf yang memuat informasi tentang ikatan ini disebut matriks adjacency. Matriks adjacency dari suatu graf sederhana G dengan n titik merupakan matriks berukuran n × n dengan entri ke-ij (baris ke-i dan kolom ke-j) bernilai 0 atau 1. Entri baris ke-i dan kolom ke-j pada matriks adjacency bernilai 0 jika tidak terdapat sisi yang menghubungkan titik vᵢ dan vj serta bernilai 1 jika tidak memenuhi. Spektrum adjacency dari suatu graf dinotasikan Spec(G) adalah matriks berukuran 2 × p, dengan p menyatakan banyaknya nilai eigen yang berbeda dari A(G). Entri a1j dari Spec(G) menyatakan nilai-nilai eigen yang berbeda tersebut dan entri a2j menyatakan multiplisitas dari nilai eigen yang bersesuaian. Dalam penelitian ini, dicari mengenai rumusan pola spektrum adjacency dari graf bintang (Sn), graf mahkota (Sn0), dan graf tangga (Ln). Perumusan pola tersebut diawali dengan menentukan A(G) dari masing-masing graf untuk nilai  yang berbeda-beda, kemudian dicari nilai-nilai eigen dari A(G) dan multiplisitasnya. Dari hasil tersebut, dirumuskan spektrum dari masing-masing graf menjadi sebuah teorema dan dibuktikan kebenarannya. Kata Kunci: matriks adjacency, nilai eigen, multiplisitas.
Pelatihan Pengoptimalan Pembuatan Media Pembelajaran Menggunakan Aplikasi Powtoon Nurainul Mifahul Huda; Yudhi; Fransiskus Fran; Helmi; Meliana Pasaribu; Yundari; Bayu Prihandono; Nilamsari Kusumastuti; Mariatul Kiftiah; Evi Noviani
Jurnal Pengabdian kepada Masyarakat Nusantara Vol. 3 No. 2.1 Desember (2022): SPECIAL ISSUE
Publisher : Cv. Utility Project Solution

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (608.626 KB)

Abstract

Pandemi Covid-19 yang saat ini melanda Indonesia memberikan tantangan yang cukup berat di dunia pendidikan. Kegiatan belajar mengajar yang selama ini dilakukan dengan tatap muka secara langsung di sekolah harus berubah menjadi kegiatan belajar mengajar yang dilakukan secara online. Beberapa aktivitas pendidikan yang dilaksanakan secara online diantaranya aktivitas belajar mengajar. Media pembelajaran yang dapat digunakan dalam pembelajaran online yaitu media pembelajaran Powtoon yang dapat membuat peserta didik tidak bosan dalam pembelajaran karena aplikasi web ini memiliki banyak fitur yang menarik. aplikasi web ini juga mempunyai fitur-fitur yang menarik dan memiliki banyak manfaat sehingga dapat memudahkan system pembelajaran. Oleh karena itu, aplikasi Powtoon dapat menjadi solusi media pembelajaran yang digunakan pada masa pandemi Covid-19. Oleh karena itu dengan adanya Kegiatan PKM Pelatihan Pengoptimalan Pembuatan Media Pembelajaran menggunakan Aplikasi Powtoon diharapkan mampu memperkenalkan dan memberikan informasi kepada guru giru terkait Powtoon. Pelaksanaan pengoptimalan pembuatan media pembelajaran menggunakan Powtoon dimulai dengan pretest kemudian pemaparan tentang konsep pengenalan dan penggunaan aplikasi Powtoon secara luring di SMP Negeri 5 Pontianak. Kegiatan dilanjutkan dengan Pelatihan pembuatan media pembelajaran. Setelah kedua sesi tersebut dilaksanakan sesi Tanya jawab. Evaluasi dilakukan setelah kegiatan pelatihan, para guru diminta untuk membuat media pembelajaran sesuai dengan mata pelajaran yang diampu dan mengerjakan soal posttest. Selanjutnya dilakukan monitoring terhadap pelaksanaan pelatihan pembuatan media pembelajaran menggunakan aplikasi Powtoon. Selain itu juga dilakukan survey tanggapan kepada guru-guru terkait tanggapan mereka tentang pelatihan yang dilakukan oleh Program Studi Matematika FMIPA UNTAN dan survey Webqual 4.0 terhadap aplikasi Powtoon. Hasil kuisioner dianalisis dan diambil kesimpulan sebagai bahan pertimbangan untuk kegiatan PKM yang akan datang.
Pewarnaan harmonis pada beberapa kelas graf berarah Nurul Jannah; Nilamsari Kusumastuti; Meliana Pasaribu
AKSIOMA : Jurnal Matematika dan Pendidikan Matematika Vol 14, No 1 (2023): AKSIOMA: Jurnal Matematika dan Pendidikan Matematika
Publisher : Universitas PGRI Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26877/aks.v14i1.13235

Abstract

 AbstrakPewarnaan graf merupakan suatu pemetaan dari elemen pada suatu graf  ke himpunan semua bilangan asli  sedemikian sehingga setiap elemen yang bertetangga tidak dipetakan ke bilangan yang sama. Pada pewarnaan graf, image dari elemen suatu graf disebut warna.  Dimisalkan dan adalah simpul-simpul pada  dan serta  adalah warna. Jika simpul  diwarnai dengan  dan simpul diwarnai dengan  maka pasangan warna yang dihasilkan adalah pasangan warna . Pewarnaan harmonis menerapkan konsep pewarnaan simpul dalam mewarnai suatu graf dengan syarat satu pasang warna muncul paling banyak satu kali. Banyak warna yang paling minimum yang digunakan dalam pewarnaan harmonis disebut bilangan kromatik harmonis. Dalam penelitian ini, konsep pewarnaan harmonis akan diterapkan pada beberapa kelas graf berarah untuk melihat pola bilangan kromatik dari masing-masing kelas tersebut. Seperti diketahui, pada graf berarah , pasangan warna sehingga proses pewarnaan tersebut menjadi lebih kompleks. Adapun kelas graf yang dibahas adalah graf lili berarah , graf komplit berarah  dan graf kipas berarah . Didapat bilangan kromatik harmonis pada graf lili berarah  adalah  dengan ; bilangan kromatik harmonis pada graf komplit berarah  adalah . Sedangkan bilangan kromatik harmonis pada pewarnaan graf kipas berarah  berada pada selang .Kata kunci: bilangan kromatik harmonis; pasangan warna; pewarnaan simpul
BILANGAN KROMATIK HARMONIS PADA GRAF PAYUNG, GRAF PARASUT, DAN GRAF SEMI PARASUT Fransiskus Fran; Nilamsari Kusumastuti; Robiandi
Jurnal Matematika Sains dan Teknologi Vol. 24 No. 1 (2023)
Publisher : LPPM Universitas Terbuka

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33830/jmst.v24i1.3945.2023

Abstract

This article discusses the harmonic coloring of simple graphs G, namely umbrella graphs, parachute graphs, and semi-parachute graphs. A vertex coloring on a graph G is a harmonic coloring if each pair of colors (based on edges or pair of vertices) appears at most once. The chromatic number associated with the harmonic coloring of graph G is called the harmonic chromatic number denoted XH(G). In this article, the exact values ​​of harmonic chromatic numbers are obtained for umbrella graphs, parachute graphs, and semi-parachute graphs.