Claim Missing Document
Check
Articles

Rekomendasi Objek Wisata di Kabupaten Hulu Sungai Utara Menggunakan Metode Profile Matching Muhammad Alkaff; Nurul Fathanah Mustamin; Reza Karimi
Inspiration: Jurnal Teknologi Informasi dan Komunikasi Vol 10, No 2 (2020): Jurnal Inspiration Volume 10 Issue 2
Publisher : STMIK AKBA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35585/inspir.v10i2.2565

Abstract

Kabupaten Hulu Sungai Utara (HSU) memiliki wilayah yang luas, bahkan lebih luas dari Ibu Kota Kalimantan Selatan yaitu Banjarmasin. Akan tetapi, pendapatan daerah Kabupaten HSU mengalami penurunan yang signifikan saat Kabupaten Balangan memisahkan diri dengan membuat Kabupaten sendiri karena minimnya sumber daya alam yang terdapat di Kabupaten HSU. Meskipun demikian, Kabupaten HSU masih mempunyai sumber daya alam dalam bidang objek wisata untuk meningkatkan potensi pendapatan daerah. Sayangnya, karena kurangnya informasi tentang objek wisata di Kabupaten HSU membuat pendapatan daerah dalam sektor objek wisata tidak maksimal. Dengan dibuatnya sistem rekomendasi untuk mendukung keputusan menggunakan metode profile matching diharapkan bisa memberikan informasi serta rekomendasi objek wisata yang sesuai dengan kriteria calon wisatawan. Dari hasil pengujian sistem yang telah dilakukan dengan cara analisa rata-rata Interpretasi Skor Perhitungan (ISP) menggunakan skala Likert didapatkan nilai akurasi sebesar 93%
Peramalan Jumlah Titik Api Pada Lahan Gambut Kalimantan Menggunakan Model Zero-Inflated Poisson Regression Muhammad Alkaff; Andry Fajar Zulkarnain; ‪Nurul Fathanah Mustamin; Nandang Eko Yulianto
Inspiration: Jurnal Teknologi Informasi dan Komunikasi Vol 11, No 2 (2021): Jurnal Inspiration Volume 11 Issue 2
Publisher : STMIK AKBA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35585/inspir.v11i2.2664

Abstract

Forest fires are a global problem that often occurs in Indonesia, especially during the dry season. One indication of forest fires is the occurrence of hotspots. Monitoring of hotspots is part of the effort to make early warnings of the dangers of forest fires. The island of Kalimantan is an island where most of the land consists of peatlands and is prone to hotspots. The hot, dry season due to sunlight and the lack of rainfall can make peatlands a fire-prone area. This study uses the Zero-Inflated Poisson Regression model to predict the number of hotspots on peatlands by considering climatic factors, namely sun exposure and rainfall. This research was conducted in four square areas (Area-1, Area-2, Area-3, Area-4) with the Tjilik Riwut Meteorological Station as the center point. The study uses hotspot monitoring data from the Terra Satellite owned by NASA (the National Aeronautics and Space Administration) and climate data in the form of data on sun exposure and rainfall from the BMKG (Meteorology, Climatology, and Geophysics Agency). The results show that the Zero-Inflated Poisson Regression model can model the four observed areas quite well with an RMSE of 12.69 in Area-1, Area-2 with an RMSE value of 10.05, RMSE of 11.53 in Area-3, and finally Area-4 with an RMSE value of 16.40.
Zakat Classification with Naïve Bayes Method in BAZNAS Yuslena Sari; Muhammad Alkaff; Eka Setya Wijaya; Gusti Nizar Syafi'i
TECHNO: JURNAL PENELITIAN Vol 10, No 1 (2021): Techno Jurnal Penelitian
Publisher : Universitas Khairun

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33387/tjp.v10i1.2750

Abstract

The National Amil Zakat Agency (BAZNAS) of the Banjar Regency, is the regional Zakat Management Agency of the Banjar Regency. BAZNAS Banjar Regency distributes the required alms according to the target to mustahik that is under the criteria or following the provisions of the Shari'a. However, BAZNAS often experiences difficulties in determining mustahik (people who are entitled to receive zakat) due to limited distribution funds and excessive data on Fakir and miskin people who are the main priority. The existence of a system that can determine two groups of recipients of the Fakir and miskin zakat based on data from the underprivileged population can help the distribution of zakat to these 2 groups. In this case, using the Naive Bayes method is very suitable in the classification of the BAZNAS mustahik determination so that it can be used to determine the prospective recipient of zakat. Based on the results of tests conducted on the Naïve Bayes classification with the Confusion Matrix calculation, the accuracy value reached 92.30%.
Analisis Perbandingan Tingkat Stress Mahasiswa Saintek dan Soshum dalam Pembelajaran Daring pada Masa Pandemi Covid-19 Berbasis Internet of Things Erika Maulidiya; Iftihatul Aulia Rahmah; Putri Ridha Amalia; Ryan Ramel; siti sheilawati; Muhammad Alkaff
Jurnal Informatika Universitas Pamulang Vol 6, No 4 (2021): JURNAL INFORMATIKA UNIVERSITAS PAMULANG
Publisher : Teknik Informatika Universitas Pamulang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32493/informatika.v6i4.14470

Abstract

The spread of COVID-19 has occurred in 2019, which has had an enormous impact on the world's population. The continuous spread of COVID-19 has caused several countries to reduce the transmission of COVID-19, one of which is implementing online learning at schools and universities. The impact that occurs on students due to home study policies makes some students feel anxious and depressed. There are two study groups at the University of Lambung Mangkurat, namely the Social Humanities (Soshum) and Science and Technology (Saintek). The student who majored in science, technology, and social science has a different way of finding the information needed and understanding every material available online. This problem is due to cultural differences in the applied learning system. These differences certainly cause different stress levels for each student majoring in science, technology, and social sciences. Therefore, this study was conducted to determine the difference in stress levels experienced by Lambung Mangkurat University students in science, technology, and social media while online. This study uses two stages to compare the results of student stress levels, including filling out the DASS42 questionnaire and direct testing with 3 IoT sensors, namely GSR, body temperature (GY-906 MLX90614 Infrared Temperature Sensor), and pulse rate (MAX30102 Pulse Oximeter & Heart-Rate Sensor). The application of the Fuzzy Logic method is used as a parameter measurement when measuring IoT-based stress levels.
Inflammatory Markers upon Admission as Predictors of Outcome in COVID-19 Patients Budhi Antariksa; Erlina Burhan; Agus Dwi Susanto; Mohamad Fahmi Alatas; Feni Fitriani Taufik; Dewi Yennita Sari; Dicky Soehardiman; Andika Chandra Putra; Erlang Samoedro; Ibrahim Nur Insan Putra Darmawan; Hera Afidjati; Muhammad Alkaff; Rita Rogayah
Jurnal Respirologi Indonesia Vol 41, No 4 (2021)
Publisher : Perhimpunan Dokter Paru Indonesia (PDPI)/The Indonesian Society of Respirology (ISR)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36497/jri.v41i4.185

Abstract

Background: Coronavirus disease 2019 (COVID-19) may cause dysregulation of the immune system, leading to hyperinflammation. Inflammatory markers can be used to predict in-hospital mortality in COVID-19 patients. This research was aimed to investigate the association between the levels of various inflammatory markers and mortality in COVID-19 patients.Methods: This study was conducted at Persahabatan National Respiratory Referral Hospital, Indonesia. Blood tests were performed upon admission, measuring the C-reactive protein, PCT, leukocyte, differential counts, and platelet count. The outcome measured was the mortality of hospitalized COVID-19 patients. Statistical analysis methods included the Mann–Whitney U test, receiver operating characteristic (ROC) analysis, and area under the curve (AUC) test.Results: Total 110 patients were included, and the laboratory values were analyzed to compare survivors and non-survivors. The non-survivor group had significantly higher leukocyte count, lower lymphocyte count, higher CRP and PCT levels, higher neutrophil-to-lymphocyte ratio (NLR), higher platelet-to-lymphocyte ratio (PLR), and lower lymphocyte-to-CRP ratio. As predictors of mortality, AUC analysis revealed that PCT, CRP, NLR, and PLR had AUCs of 0.867, 0.82, 0.791, and 0.746, respectively.Conclusions: Routine and affordable inflammatory markers tested on admission may be useful as predictors of in-hospital mortality in COVID-19 patients requiring hospitalization.
Evaluasi Penerimaan Sistem Perencanaan dan Penilaian Anak Didik menggunakan Technology Acceptance Model Muhammad Alkaff; Muti'a Maulida; Arina Ihda Rahmah Syarifah
ULTIMA InfoSys Vol 12 No 1 (2021): Ultima InfoSys : Jurnal Ilmu Sistem Informasi
Publisher : Universitas Multimedia Nusantara

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31937/si.v12i1.1593

Abstract

Most teachers have difficulty in developing Learning Implementation Plans (RPP) due to the large number of instruments in the RPP that need to be made and adapted to the standard format. Likewise, when evaluating students, teachers need to look back at the lesson plan before conducting an assessment. Teacher activities in making lesson plans and assessing according to lesson plans are very time-consuming. Therefore, the Learning Planning and Assessment System for Students (SPADIK) was developed. This new application aimed to ease teacher effort in making learning plans and assessments for students at TK Khalifah Banjarmasin II. The teacher always welcomes the existence of new technology that can help their work. However, if the teacher cannot operate this new technology, they will certainly be in vain. Therefore, evaluation of acceptance of the SPADIK system is required by using the Technology Acceptance Model (TAM). This study uses a qualitative approach by conducting interviews with six kindergarten teachers of Khalifah Banjarmasin II, where this system was implemented. Data from interviews with teachers then reduced to a short description following the variables in the TAM model. From the results of testing with the TAM model, it was concluded that SPADIK could be accepted and used well by the teachers. Index Terms—evaluation; information system; RPP; students assessment; Technology Acceptance Model (TAM)
Sistem Peringatan Dini Keterlambatan Masa Studi Mahasiswa Menggunakan Metode Support Vector Machine Muhammad Alkaff; Eka Setya Wijaya; Akhmad Rojali
SMARTICS Journal Vol 6 No 2: SMARTICS Journal (Oktober 2020)
Publisher : Universitas PGRI Kanjuruhan Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21067/smartics.v6i2.4579

Abstract

Students graduating late from college are a common problem in universities. The study of students at universities is generally designed to be completed in 3.5 to 4 years. If a student has not graduated past that time, he is considered late in completing his education. Lambung Mangkurat University, as the oldest university in Kalimantan, also experienced these problems. Therefore, an early warning system was build to predict students' possibility of being late in completing their studies. This study uses a sample of students from the Faculty of Engineering, the University of Lambung Mangkurat, to predict students who will be late graduating from Lambung Mangkurat University since semester 5. This system was to develop using a model built using the Support Vector Machine (SVM) method. Model training conducted using 755 data from Lambung Mangkurat University Faculty of Engineering students from 2010 to 2014. Then, the performance of the model tested using 234 student data from 2015 and 2016. The parameters used were the number of credits, gender, GPA on semester 1 to 4, and study programs. The test results show that the model has good performance to predict students who will be late in completing their studies with 88.2% accuracy.
Sistem Rekomendasi Buku pada Perpustakaan Daerah Provinsi Kalimantan Selatan Menggunakan Metode Content-Based Filtering Muhammad Alkaff; Husnul Khatimi; Andi Eriadi
MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer Vol 20 No 1 (2020)
Publisher : LPPM Universitas Bumigora

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (536.987 KB) | DOI: 10.30812/matrik.v20i1.617

Abstract

Perpustakaan Daerah Provinsi Kalimantan Selatan merupakan salah satu perpustakaan dan pusat penyedia layanan informasi yang ada di Kalimantan Selatan. Namun. selama ini pengunjung perpustakaan kesulitan dalam mencari buku yang berkaitan dengan buku yang dipilih sebelumnya dan juga dalam menemukan alternatif buku lain ketika buku yang diinginkan tersebut telah dipinjam. Dengan adanya rekomendasi atau saran buku-buku lain yang berhubungan diharapkan membantu dalam mendapatkan buku yang sesuai dan diinginkan pengunjung perpustakaan. Pada penelitian ini penerapan sistem rekomendasi menggunakan metode Content-Based Filtering dalam memberikan rekomendasi buku yang bekerja dengan melihat kemiripan item yang dianalisis dari fitur yang dikandungnya dengan Weighted Tree Similarity. Berdasarkan hasil pengujian yang telah dilakukan pada 5 skenario pengujian yang diujikan dihasilkan nilai precision sebesar 88%.
Penerapan Generalized Regression Neural Networks untuk Memprediksi Produksi Padi Terhadap Perubahan Iklim Muhammad Alkaff; Yuslena Sari
JTERA (Jurnal Teknologi Rekayasa) Vol 2, No 2: December 2017
Publisher : Politeknik Sukabumi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31544/jtera.v2.i2.2017.117-124

Abstract

Padi sebagai bahan makanan pokok utama bagi masyarakat Indonesia merupakan tanaman pangan yang rentan terhadap perubahan iklim. Pendataan dan perhitungan ramalan hasil produksi padi sangat diperlukan untuk mendukung kebijakan yang berkaitan dengan ketahanan pangan. Penelitian ini bertujuan untuk melakukan peramalan terhadap produksi padi di Kabupaten Barito Kuala sebagai kabupaten penghasil padi terbesar di Kalimantan Selatan dengan menggunakan data iklim sebagai input. Data iklim yang digunakan berasal dari Stasiun Meteorologi Syamsudin Noor, sedangkan sebagai data output adalah data produksi padi dari Badan Pusat Statistika (BPS) Provinsi Kalimantan Selatan. Metode yang digunakan untuk melakukan peramalan produksi padi adalah Generalized Regression Neural Networks (GRNN). Dari hasil pengujian didapatkan nilai Root Mean Square Error (RMSE) sebesar 0,296 dengan menggunakan parameter smoothness bernilai 1. 
Penerapan Pattern MVC (Model View Controller) dalam Pengembangan Aplikasi Identifikasi Jam Puncak Arus Lalu Lintas pada Simpang Lima Muhammad Alkaff; Iphan Fitrian Radam; Winarto Chandra
JUSTINDO (Jurnal Sistem dan Teknologi Informasi Indonesia) Vol 6, No 2 (2021): JUSTINDO
Publisher : Universitas Muhammadiyah Jember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32528/justindo.v6i2.4381

Abstract

Architecture patterns merupakan panduan dan petunjuk untuk membuat suatu aplikasi agar maintainable dan dapat dikembangkan dengan mudah, serta mempercepat proses pengembangan dengan menyediakan cara yang telah terbukti untuk menyelesaikan masalah yang terjadi dikemudian seperti yang dilakukan Model-View-Controller (MVC). Tujuan penelitian ini untuk membangun sistem yang dapat menyederhanakan proses kalkulasi dan sortir untuk menemukan jam puncak arus lalu lintas pada suatu simpang lima jalan raya berbasis website dengan menerapkan MVC dan melakukan pengujian code smell. Penerapan pattern MVC berhasil diterapkan pada pengembangan aplikasi identifikasi jam puncak arus lalu lintas pada suatu simpang lima jalan raya berbasis website, serta telah dilakukan pengujian code smell pada kode programnya dengan membandingkan pada kode program native (tanpa MVC). Berdasarkan hasil pengujian code smell di antara kode program menggunakan MVC dan yang tidak, didapatkan bahwa dalam 5 case MVC tidak ditemukan code smell, sedangkan kode program native ditemukan code smell pada 4 case dari 5 case yang diuji yaitu Duplicate Code, Long Method, Excessively long line of code (or God Line), Data clump, Excessively short identifiers, dan Middle Man.
Co-Authors Abdullayev, Vugar Agus Dwi Susanto Ahmad Zainul Abidin Ainiyyah, Ainiyyah Akhmad Rojali Aldy Heriwardito Alfando, Muhammad Alvin Andi Eriadi Andi Farmadi Andreyan Rizky Baskara ARIF RAHMAN, MUHAMMAD Arina Ihda Rahmah Syarifah Ariska Deffy Anggarany, Ariska Deffy Baskara, Andreyan Budhi Antariksa Ceva W. Pitoyo Dany Primanita Kartikasari Darmawan, Puja Dewi Rizqia Najipah Dewi Yennita Sari Dodon Turianto Nugrahadi Erlina Burhan Fajar Zulkarnain, Andry Fatma Indriani Friska Abadi Gusti Nizar Syafi'i Halimah Halimah Hayatun Nufus Henning Titi Ciptaningtyas Hera Afidjati Herry Purnomo Husnul Khatimi Ibrahim Nur Insan Putra Darmawan Iftihatul Aulia Rahmah Iphan Fitrian Radam Iphan Fitrian Radam Iqbal Rizqi, Muhammad Irwan Budiman Jumadi Mabe Parenreng Marimin Marimin Maulani, Irham Maulidiya, Erika Maya Amalia Mohamad Fahmi Alatas Muhammad Afrizal Miqdad Muhammad Fachrurrazi Muhammad Nur Abdi Muhammad Reza Faisal, Muhammad Reza Muhammad Ridho A.G.D. Muhammad Ziki Elfirman Muliadi Muti'a Maulida Mutia Maulida Nandang Eko Yulianto Nurul Fathanah Mustamin Nurul Qamaria Paramita, Diana Putra, Andika Chandra Putri Ridha Amalia Raisa Amalia Rakhmadhany Primananda, Rakhmadhany Rani Sauriasari, Rani Reza Karimi Rita Rogayah Rudy Ansari, Rudy Rudy Herteno Ryan Ramel Samoedro, Erlang Saragih, Triando Hamonangan Sa’diah, Halimatus siti sheilawati Soehardiman, Dicky Sugiantoro Sugiantoro Sugiantoro Sugiantoro Sukamto Koesnoe Sukardi Sukardi Supeno Djanali Syarifah Soraya Takhwifa, Famila Taufik, Feni Fitriani Wenny Puspita Wijaya, Eka Setya Winarto Chandra Winda Agustina Windarsyah Windarsyah Yandra Arkeman Yulianto, Nandang Eko Yuslena Sari, Yuslena