p-Index From 2021 - 2026
11.441
P-Index
This Author published in this journals
All Journal Bulletin of Electrical Engineering and Informatics Nuansa Informatika Jurnal Informatika dan Teknik Elektro Terapan Sistemasi: Jurnal Sistem Informasi JOIV : International Journal on Informatics Visualization Sinkron : Jurnal dan Penelitian Teknik Informatika Jurnal Ilmiah Universitas Batanghari Jambi JURNAL MEDIA INFORMATIKA BUDIDARMA CogITo Smart Journal Jurnal Informatika Universitas Pamulang JITTER (Jurnal Ilmiah Teknologi Informasi Terapan) Jurnal Sisfokom (Sistem Informasi dan Komputer) ILKOM Jurnal Ilmiah JurTI (JURNAL TEKNOLOGI INFORMASI) Jurnal Teknologi Terpadu EDUMATIC: Jurnal Pendidikan Informatika Building of Informatics, Technology and Science Jutisi: Jurnal Ilmiah Teknik Informatika dan Sistem Informasi Technologia: Jurnal Ilmiah Aisyah Journal of Informatics and Electrical Engineering Indonesian Journal of Business Intelligence (IJUBI) bit-Tech Aviation Electronics, Information Technology, Telecommunications, Electricals, Controls (AVITEC) Respati Jurnal Abdi Insani JTIULM (Jurnal Teknologi Informasi Universitas Lambung Mangkurat) Journal of Computer System and Informatics (JoSYC) Jurnal Graha Pengabdian Infotek : Jurnal Informatika dan Teknologi jurnal syntax admiration TEPIAN Jurnal Teknologi Informatika dan Komputer Jurnal Teknik Informatika (JUTIF) Jurnal Teknimedia: Teknologi Informasi dan Multimedia JNANALOKA SENADA : Semangat Nasional Dalam MengabdI Journal of Electrical Engineering and Computer (JEECOM) Jurnal FASILKOM (teknologi inFormASi dan ILmu KOMputer) Jurnal Informatika dan Teknologi Komputer ( J-ICOM) Jurnal Sisfotek Global Jurnal Informatika Teknologi dan Sains (Jinteks) Malcom: Indonesian Journal of Machine Learning and Computer Science Cerdika: Jurnal Ilmiah Indonesia SENADA : Semangat Nasional Dalam Mengabdi Intechno Journal : Information Technology Journal The Indonesian Journal of Computer Science SITEKNIK: Sistem Informasi, Teknik dan Teknologi Terapan Jurnal Teknik AMATA Jurnal TAM (Technology Acceptance Model)
Claim Missing Document
Check
Articles

Water Quality Analysis and Consumption Feasibility Using Support Vector Machine and CatBoosting with Hyperparameter Tuning Rahayu, Christa Putri; Kusnawi
SITEKNIK: Sistem Informasi, Teknik dan Teknologi Terapan Vol. 2 No. 4 (2025): October
Publisher : RAM PUBLISHER

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5281/zenodo.17342085

Abstract

Water quality analysis plays an important role in determining the suitability of water for human consumption. This study aims to build a machine learning model that is able to classify water quality based on several parameters such as pH, hardness, solids content, chloramines, sulfate, conductivity, organic carbon, trihalomethanes, and turbidity. The dataset used comes from Kaggle with a total of 3,276 sample data. The two main algorithms applied in this study are Support Vector Machine (SVM) and CatBoost. The research process includes data preprocessing, data balancing using SMOTE, modeling, and model performance evaluation. Hyperparameter tuning is applied to both algorithms to improve performance. The results show that CatBoost has the best performance with an accuracy of 95.8% after hyperparameter tuning, compared to SVM which achieved an accuracy of 77.9%. In addition, CatBoost excels in all evaluation metrics, including precision, recall, and F1-score.
Chili Leaf Disease Classification Using Transfer Learning with VGG16 and MobileNetV2 Combined with Random Search Hyperparameter Tuning Aryawijaya; Kusnawi
SITEKNIK: Sistem Informasi, Teknik dan Teknologi Terapan Vol. 2 No. 4 (2025): October
Publisher : RAM PUBLISHER

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5281/zenodo.17383224

Abstract

Chili is one of the main food commodities in Indonesia with considerable economic value. Frequent climate changes have made chili plants more vulnerable to pest and disease attacks. Early identification of these diseases is crucial, as delays can lead to crop failure. However, this process presents its own challenges, as it requires specific expertise and considerable time. This study employs the transfer learning method using the VGG16 and MobileNetV2 architectures to build a model capable of classifying diseases in chili plants based on leaf images, along with the use of Random Search hyperparameter tuning to improve model accuracy. The results show that the use of transfer learning for disease classification achieved high accuracy, with MobileNetV2 reaching an accuracy score of 88% without tuning. Meanwhile, the application of Random Search hyperparameter tuning proved effective in improving model accuracy, particularly with the VGG16 architecture, which saw a significant accuracy increase from 51% to 89%. It can be concluded that the transfer learning method is well-suited for identifying diseases in chili plants based on leaf images with high accuracy, and that the application of Random Search hyperparameter tuning successfully enhanced the model’s performance.
Klasifikasi Penyakit Pada Daun Cabai Menggunakan Arsitektur VGG16 Mashuri, Ahmad Sanusi; Sunyoto, Andi; Kusnawi, Kusnawi
Journal of Electrical Engineering and Computer (JEECOM) Vol 6, No 2 (2024)
Publisher : Universitas Nurul Jadid

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33650/jeecom.v6i2.9116

Abstract

Penyakit pada tanaman cabai dapat mengancam produktivitas dan kualitas hasil panen jika tidak terdeteksi dan diatasi secara tepat waktu. Untuk meningkatkan deteksi dini penyakit pada tanaman cabai, kami mengembangkan sistem klasifikasi menggunakan arsitektur VGG16, sebuah jaringan saraf konvolusional yang telah terbukti efektif dalam pengolahan gambar kompleks. Penelitian ini memanfaatkan dataset citra daun cabai yang terdiri dari beberapa kelas penyakit yang umum dijumpai, termasuk Healthy, Yellowish, whitefly, leafcurl dan leafspot. Citra-citra ini diolah dan dinormalisasi untuk pelatihan dan pengujian model. Arsitektur VGG16 digunakan sebagai model dasar, yang telah dipre-trained pada dataset ImageNet untuk meningkatkan kinerja klasifikasi. Proses pelatihan model dilakukan dengan memanfaatkan teknik transfer learning, di mana lapisan-lapisan akhir dari VGG16 disesuaikan dengan dataset penyakit daun cabai. Selama pengujian, sistem berhasil mengenali dan mengklasifikasikan penyakit pada daun cabai dengan tingkat akurasi yang tinggi. Hasil evaluasi menunjukkan bahwa arsitektur VGG16 mampu mengenali berbagai penyakit dengan akurasi rata-rata sebesar 0.9962%. sedangkan waktu komputasi yang dibutukan adalah 7 detik.
Pengaruh Jenis Stemmer Terhadap Algoritma Svm Pada Analisis Sentimen Berbasis Lexicon Dengan Afinn Lexicon Resource Huda, Luthfi Nurul; Sunyoto, Andi; Kusnawi, Kusnawi
Journal of Electrical Engineering and Computer (JEECOM) Vol 6, No 1 (2024)
Publisher : Universitas Nurul Jadid

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33650/jeecom.v6i1.8227

Abstract

Analisis sentimen merupakan bidang ilmu yang memiliki potensi besar dalam penelitian dan aplikasi praktis. Ini merupakan sebuah tugas dari NLP yang dieksploitasi untuk mengekstraksi dan mengklasifikasi konten berdasarkan sentimen emosi baik positive, negative dan netral. Analisis sentimen sendiri dibagi menjadi tiga teknik: teknik berbasis leksikon (lexicon-based), teknik berbasis machine learning (machine learning-based), dan teknik hybrid-based. Penelitian ini mengangkat teknik hybrid-based. Penelitian ini befokus untuk menemukan jenis stemmer yang dapat meningkatkan performa dari algoritma SVM pada analisis sentimen berbasis lexicon. Penelitian ini menerapkan tiga jenis stemmer yang berbeda yakni porter stemmer, snowball stemmer, dan Lancaster stemmer. Kemudian menggunakan AFINN lexicon dictionary. Terakhir algoritma SVM akan dievaluasi menggunakan confusion matrix. Penelitian ini melakukan tiga skenario, yakni gabungan antara jenis stemmer yang digunakan dengan algoritma SVM. Dari ketiga skenario yang dilakukan, gabungan SVM dan Snowball stemmer mendapatkan nilai Accuracy, Precision, Recall dan F1-Score paling tinggi dari dua skenario lainnya. Yakni dengan nilai Accuracy sebesar 95,67 %, Precision sebesar 95,68 %, Recall sebesar 95,67 % dan F1-Score sebesar 95,67 %.
Analisis Dampak Karakteristik Siswa pada Masa Pandemi COVID-19 terhadap Prestasi Akademik menggunakan Analisis Diskriminan dan Regresi Multinomial Widodo, Cynthia; Muhammad, Alva Hendi; Kusnawi, Kusnawi
Journal of Electrical Engineering and Computer (JEECOM) Vol 6, No 2 (2024)
Publisher : Universitas Nurul Jadid

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33650/jeecom.v6i2.9070

Abstract

Berdasarkan analisis karakteristik siswa di tengah pandemi COVID-19, studi ini menggunakan analisis diskriminan dan regresi multinomial untuk mengeksplorasi dampaknya terhadap prestasi akademik. Faktor-faktor seperti usia, jenis kelamin, tingkat stres, dan transisi ke lingkungan pembelajaran virtual diperiksa untuk memahami pengaruhnya terhadap hasil pendidikan. Temuan ini menyoroti peran penting manajemen stres dan tantangan yang ditimbulkan oleh lingkungan pembelajaran virtual, serta menekankan perlunya intervensi yang ditargetkan untuk mendukung kesejahteraan siswa dan keberhasilan akademik. Analisis diskriminan mengidentifikasi faktor-faktor utama yang membedakan tingkat prestasi akademik, sementara regresi multinomial memodelkan hubungan kompleks di antara variabel-variabel yang mempengaruhi pencapaian siswa. Penelitian ini berkontribusi pada strategi pendidikan yang disesuaikan dengan kebutuhan siswa yang terus berkembang di lanskap pendidikan yang ditransformasi secara digital.
Identifikasi Ekspresi Wajah Manusia Menggunakan Algoritma Grey Wolf Optimizer dan Convolutional Neural Network Rohim, Ni’matur; Sunyoto, Andi; Kusnawi, Kusnawi
Journal of Electrical Engineering and Computer (JEECOM) Vol 6, No 1 (2024)
Publisher : Universitas Nurul Jadid

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33650/jeecom.v6i1.8269

Abstract

Penelitian ini mengeksplorasi penggunaan algoritma Grey Wolf Optimizer (GWO) untuk mengoptimalkan parameter pada Convolutional Neural Network (CNN) dalam mengenali ekspresi wajah manusia. Ekspresi wajah adalah aspek penting dalam komunikasi manusia, dan pengenalan ekspresi tersebut menjadi semakin vital dalam interaksi manusia-mesin dan bidang kesehatan psikologi. Metode deep learning, terutama CNN, telah terbukti efektif dalam mengklasifikasikan ekspresi manusia, meskipun masih menghadapi beberapa tantangan, seperti pengaturan parameter yang rumit dan kebutuhan akan data yang besar. Penelitian ini bertujuan untuk mencari parameter optimal untuk meningkatkan kinerja CNN dalam mengenali ekspresi wajah menggunakan algoritma GWO. Data yang digunakan adalah dataset Facial Expression Recognition 2013 (FER-2013), dengan total 600 citra wajah yang dibagi menjadi tiga kelas: happy, sad, dan angry. Pendekatan yang diusulkan mencakup preprocessing data, pencarian parameter arsitektur CNN menggunakan GWO, pembuatan model CNN, dan pengujian model menggunakan data testing. Hasil pengujian menunjukkan bahwa dengan parameter optimal, model CNN mencapai akurasi yang baik, dengan nilai akurasi 79% pada data training, 60% pada data validation, dan rata-rata akurasi 77% pada data testing. Penelitian ini menyoroti pentingnya penanganan yang cermat dalam menentukan parameter untuk memastikan hasil yang optimal dalam pengenalan ekspresi wajah manusia menggunakan CNN.
Peningkatan Akurasi Deteksi Kendaraan Menggunakan Kombinasi Haar Cascade Classifier dan Convolutional Neural Networks (CNN) Irawanto, Indra; Sunyoto, Andi; Kusnawi, Kusnawi
Journal of Electrical Engineering and Computer (JEECOM) Vol 6, No 1 (2024)
Publisher : Universitas Nurul Jadid

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33650/jeecom.v6i1.8242

Abstract

Teknologi pengolahan citra digital dan computer vision telah memainkan peran penting dalam meningkatkan sistem pengaturan lalu lintas. Meskipun kamera CCTV umum digunakan, kebanyakan sistem masih bersifat pasif dan terbatas dalam pengawasan arus lalu lintas. Dalam menanggapi kebutuhan akan sistem yang lebih proaktif dan adaptif, dikembangkan berbagai sistem Manajemen Lalu Lintas Pintar yang mengintegrasikan teknologi deteksi objek kendaraan canggih, seperti kombinasi Haar Cascade Classifier dengan Convolutional Neural Network (CNN). Haar Cascade Classifier efektif dalam mendeteksi objek real-time, namun dapat mengalami kesulitan dalam kondisi gambar kompleks. Integrasi dengan CNN diharapkan meningkatkan akurasi deteksi kendaraan dalam berbagai kondisi pencahayaan dan latar belakang. Penelitian ini bertujuan untuk mengeksplorasi arsitektur CNN yang optimal untuk diintegrasikan dengan Haar Cascade guna mencapai efisiensi dan akurasi deteksi kendaraan yang lebih tinggi dalam pengaturan lalu lintas. Dari hasil eksperimen, kombinasi Haar Cascade dan CNN efektif dalam mendeteksi dan mengestimasi jumlah kendaraan. Performa model tergantung pada kompleksitas gambar, di mana semakin kompleks gambar, semakin rendah akurasi dan sensitivitasnya. Penggunaan arsitektur MobileNet dan Xception menunjukkan kemampuan yang baik dalam mendeteksi kendaraan, dengan Xception memberikan sedikit peningkatan dalam akurasi (80.13%) dibandingkan dengan MobileNet (79.19%), namun dengan waktu komputasi yang sedikit lebih lama (1.02 detik dibandingkan dengan 0.82 detik). Pilihan antara kedua model tergantung pada kebutuhan spesifik aplikasi, seperti kebutuhan untuk akurasi yang lebih tinggi atau kecepatan pemrosesan yang lebih cepat. Dengan demikian, penelitian ini berpotensi untuk memberikan kontribusi signifikan bagi pengembangan sistem lalu lintas yang lebih cerdas dan responsif di masa depan.
Analisis Kombinasi Algoritma K-Means Clustering dan TOPSIS Untuk Menentukan Pendekatan Strategi Marketing Berdasarkan Background Target Audiens Ngaeni, Nurus Sarifatul; Kusrini, Kusrini; Kusnawi, Kusnawi
Journal of Computer System and Informatics (JoSYC) Vol 5 No 2 (2024): February 2024
Publisher : Forum Kerjasama Pendidikan Tinggi (FKPT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/josyc.v5i2.4948

Abstract

The promotion is an annual agenda for STIMIK Tunas Bangsa Banjarnegara. The aim of this promotional activity is to attract more new students every year. On the other hand, campus promotion encounters obstacles in mapping applicant data from previous years so that considerations for new promotion policies are based on data from the school of origin of alumni or students. By using the K-Means Clustering algorithm, applicant data can be grouped according to the background represented through the school origin attribute. , parents' occupation and place of origin. Then the data is processed using DSS with the TOPSIS method to obtain priority references for marketing types for each cluster. The results of calculating the silhouette coefficient value for the five clusters obtained a score of 0.426. Meanwhile, in the ranking process using the TOPSIS method, the first rank was found in cluster 0 with a score of 0.994110. Further stages use the Decision Tree method to obtain output in the form of recommendations for promotion types for each cluster. For example, cluster 0 is recommended to use promotion types with codes P1, P2, P3, P8 and P9.
PCOS DISEASE CLASSIFICATION USING FEATURE SELECTION RFECV AND EDA WITH KNN ALGORITHM METHOD Pitaloka, Nadhira Triadha; Kusnawi, Kusnawi
Jurnal Teknik Informatika (Jutif) Vol. 4 No. 4 (2023): JUTIF Volume 4, Number 4, August 2023
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jutif.2023.4.4.831

Abstract

Polycystic ovary syndrome is an endocrine disorder of the ovaries that causes hormonal disturbances in women of reproductive age, where androgen secretion in the ovaries of women with Polycystic Ovary Syndrome (PCOS) is excessive compared to normal women. This usually occur in women with obesity which is characterized by irregular menstrual cycles, chronic anovulation, hyperandrogenism, and even infertility. Efforts are used to treat this disease in the form of hormone therapy, laparoscopic ovarian drilling, and in-vitro fertilization. However, these three therapies are focused on symptomatic therapy and are less effective in treating PCOS-related infertility. Detecting PCOS disease early is very necessary so that prevention and treatment can be carried out immediately. Therefore, a classification is carried out to detect PCOS disease by being able to analyze data that has a high degree of accuracy. The method used for the classification of PCOS disease is using the K Nearest Neighbor (KNN), method which previously carried out the feature selection process, namely the Exploratory Data Analysis (EDA), method which is used for the data analysis process by means of an analysis approach to data to find out the most accurate method and using the Recursive Feature Elimination and Cross-Validation (RFECV) selection method which ranks the features based on their level of importance to the prediction process. Further, the data classification process uses the K-Nearest Neighbors (KNN) algorithm. The results of the Exploratory Data Analysis (EDA) feature selection process produce 10 data attributes that are used and are continued by the Recursive Feature Elimination and Cross-Validation (RFECV) process by producing the 7 most important attributes used and finally the K-Nearest Neighbors (KNN) method has a high level high accuracy by producing an accuracy value of 93%, precision 82%, recall 100%, and F1 score 90%.
COMPARISON OF LEAST SQUARE AND QUADRATIC METHODS ON PREDICTION THE NUMBER OF NEW STUDENT APPLICANTS Atin Hasanah; Kusrini, Kusrini; Kusnawi, Kusnawi
Jurnal Teknik Informatika (Jutif) Vol. 4 No. 6 (2023): JUTIF Volume 4, Number 6, Desember 2023
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jutif.2023.4.6.1124

Abstract

New student registration is held every year with several mechanisms. However, in recent years the number of applicants has decreased even though it had experienced a surge in the previous year. So that, it is necessary to have a prediction to predict the number of applicants in the coming year. In addition, the results of these predictions can be used as material for consideration in determining the quota/ceiling for the number of new student admissions in the following academic year. This research used the Least Square and Quadratic methods to predict the number of new student applicants based on data on the number of applicants from the 2014/2015 to 2022/2023 academic years. Performance testing of the two methods was tested with three (3) testing methods : MAE, MAPE, and MSE. The performance test found that the Quadratic method is more suitable with the MAPE value in the "Good" forecasting accuracy category, which is 11%. For the MAE value, it gets 452,17 and an MSE of 302069,04. While Least Square produces a MAPE value in the "Enough" forecasting accuracy category of 30%, for the MAE value, it gets 996,97 and an MSE of 1494205,36.
Co-Authors Abdulloh, Ferian Fauzi Afrig Aminuddin Agung Susanto Agung Susanto Ahmad Fauzi Ahmad Yusuf Ainnur Rafli Ainul Yaqin Ali Mustopa, Ali Alva Hendi Muhammad Andi Sunyoto Anggit Dwi Hartanto, Anggit Dwi Antara, Pebri Ardiansyah, Fachri Arief Setyanto Arifuddin, Danang Arnila Sandi Aryawijaya Asadulloh, Bima Pramudya Assani, Moh. Yushi Atin Hasanah Atin Hasanah Atmoko, Alfriadi Dwi Aulya, Fiola Utri BAYU SATRIYA, RIYAN Bhahari, Rifqi Hilal Candra Rusmana Cynthia Widodo Dede - Sandi Dede Husen Dede Sandi Dewi Kartika Dimaz Arno Prasetio Elsa Virantika Ema Utami Erna Utami Fajar Abdillah, Moh Fajar Aji Prayoga Haris, Ruby Hartatik Haryo, Wasis Hasirun Hasirun Hendrik Hendrik Henri Kurniawan Hidayatunnisa'i Huda, Luthfi Nurul Indra Irawanto Irawanto, Indra Joang Ipmawati Kanoena, Melcior Paitin Karisma Septa Kresna Khairullah, Irfan Khalil Khoerul Anam, Khoerul Khoirunnita, Aulia Khrisna Irham Fadhil Pratama Kusirini Kusrini Kusrini Kusrini KUSRINI Kusrini - - Kusrini Kusrini Kusrini Kusrini Kusrini Kusrini Kusrini Kusrini Kusrini Kusrini Kusrini, Kusrini M Andika Fadhil Eka Putra M. Nurul Wathani Maehendrayuga, Arief Majid Rahardi Maringka, Raissa Mashuri, Ahmad Sanusi Mochamad Agung Wibowo Muh. Syarif Hidayatullah Muhammad Firdaus Abdi Muhammad Firdaus Abdi Muhammad Husein Budiraharjo Muhammad Irvan Shandika Muhammad Reza Riansyah Nayoma, Fisan Syafa Neni Firda Wardani Tan Ngaeni, Nurus Sarifatul Nurul Zalza Bilal Jannah Omar Muhammad Altoumi Alsyaibani Pandiangan, Van Daarten Pattimura, Yudha Bagas Pebri Antara Pitaloka, Nadhira Triadha Pramono, Aldi Yogie Prastyo, Rahmat Prema Adhitya Dharma Kusumah Puji Prabowo, Dwi Qurniaty, Charlen Alta Raffa Nur Listiawan Dhito Eka Santoso Rahayu, Christa Putri RAMADHAN, SYAIFUL Ridwan Sanjaya Rifda Faticha Alfa Aziza Rita Wati Ritham Tuntun Rizal Khadarusman Rodney Maringka Rohim, Ni’matur saifulloh Saifulloh, saifulloh Salman Alfaris Salman Alfaris, Salman San Sudirman Sekarsih, Fitria Nuraini Sentoso, Thedjo Sepriadi - Bumbungan Sepriadi Bumbungan Sri Yanto Qodarbaskoro Sry Faslia Hamka Sudirman, San Suyatmi Suyatmi Suyatmi Suyatmi Syaiful Huda Syaiful Ramadhan Tamuntuan, Virginia Taryoko, Taryoko Teguh Arlovin Wahyu Pujiharto, Eka Wangsa, Sabda Sastra Widodo, Cynthia Widyanto, Agung Wirawan, Tegar Yusa, Aldo Yusrinnatul Jinana triadin Yuza, Adela Zaenul Amri