p-Index From 2021 - 2026
11.441
P-Index
This Author published in this journals
All Journal Bulletin of Electrical Engineering and Informatics Nuansa Informatika Jurnal Informatika dan Teknik Elektro Terapan Sistemasi: Jurnal Sistem Informasi JOIV : International Journal on Informatics Visualization Sinkron : Jurnal dan Penelitian Teknik Informatika Jurnal Ilmiah Universitas Batanghari Jambi JURNAL MEDIA INFORMATIKA BUDIDARMA CogITo Smart Journal Jurnal Informatika Universitas Pamulang JITTER (Jurnal Ilmiah Teknologi Informasi Terapan) Jurnal Sisfokom (Sistem Informasi dan Komputer) ILKOM Jurnal Ilmiah JurTI (JURNAL TEKNOLOGI INFORMASI) Jurnal Teknologi Terpadu EDUMATIC: Jurnal Pendidikan Informatika Building of Informatics, Technology and Science Jutisi: Jurnal Ilmiah Teknik Informatika dan Sistem Informasi Technologia: Jurnal Ilmiah Aisyah Journal of Informatics and Electrical Engineering Indonesian Journal of Business Intelligence (IJUBI) bit-Tech Aviation Electronics, Information Technology, Telecommunications, Electricals, Controls (AVITEC) Respati Jurnal Abdi Insani JTIULM (Jurnal Teknologi Informasi Universitas Lambung Mangkurat) Journal of Computer System and Informatics (JoSYC) Jurnal Graha Pengabdian Infotek : Jurnal Informatika dan Teknologi jurnal syntax admiration TEPIAN Jurnal Teknologi Informatika dan Komputer Jurnal Teknik Informatika (JUTIF) Jurnal Teknimedia: Teknologi Informasi dan Multimedia JNANALOKA SENADA : Semangat Nasional Dalam MengabdI Journal of Electrical Engineering and Computer (JEECOM) Jurnal FASILKOM (teknologi inFormASi dan ILmu KOMputer) Jurnal Informatika dan Teknologi Komputer ( J-ICOM) Jurnal Sisfotek Global Jurnal Informatika Teknologi dan Sains (Jinteks) Malcom: Indonesian Journal of Machine Learning and Computer Science Cerdika: Jurnal Ilmiah Indonesia SENADA : Semangat Nasional Dalam Mengabdi Intechno Journal : Information Technology Journal The Indonesian Journal of Computer Science SITEKNIK: Sistem Informasi, Teknik dan Teknologi Terapan Jurnal Teknik AMATA Jurnal TAM (Technology Acceptance Model)
Claim Missing Document
Check
Articles

Comparison ff Sentiment Labeling Using Textblob, Vader, and Flair in Public Opinion Analysis Post-2024 Presidential Inauguration with IndoBERT Kusnawi, Kusnawi; Anam, Khoerul
Jurnal Teknik Informatika (Jutif) Vol. 6 No. 2 (2025): JUTIF Volume 6, Number 2, April 2025
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jutif.2025.6.2.4015

Abstract

The results of the 2024 Indonesian presidential election decided that Prabowo Subianto and Gibran Rakabuming Raka became the elected pair of Indonesian presidential and vice-presidential candidates in 2024. The pair's election triggered various public reactions, especially on social media platforms. Some social media platforms provided diverse opinions, indicating a wide variety of views on this issue. This research aims to analyze public opinion after the election of the 2024 Indonesian president by comparing sentiment using TextBlob, VADER (Valence Aware Dictionary and sEntiment Reasoner), and Flair. Training and testing are done with the IndoBERT model to determine the most effective sentiment labeling. This research starts by collecting text data from social media X, YouTube, and Instagram, then preprocessing, translating, and labeling data using three libraries, training, and testing using IndoBERT. The results of training and testing data show that Flair has an accuracy of 81.29%, TextBlob has an accuracy of 73.35%, and VADER has an accuracy of 74.86%. From the accuracy results obtained, it can be concluded that labeling using Flair provides the greatest accuracy of the others because the Flair labeling process uses deep learning and contextual embedding techniques.
Penerapan Kombinasi Algoritma SVM-KNN dalam seleksi User SAKTI berdasarkan Hasil Kinerja Pegawai pada Kementerian XYZ Ramadhan, Syaiful; Kusrini, Kusrini; Kusnawi, Kusnawi
Jurnal Teknologi Informatika dan Komputer Vol. 9 No. 2 (2023): Jurnal Teknologi Informatika dan Komputer
Publisher : Universitas Mohammad Husni Thamrin

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37012/jtik.v9i2.1716

Abstract

Kementerian XYZ merupakan Kementerian dengan jumlah pegawai lebih dari 5.000 pegawai. Pada saat dibentuk tidak dilakukan pemetaan pegawai, hal ini mengakibatkan surplus jumlah pegawai, tidak terkecuali pada Biro Barang Milik Negara (BMN). Bagi sebuah organisasi, SDM yang berlimpah merupakan hal yang baik, namun perlu dilakukan penyeleksian pegawai agar dapat meningkatkan produktivitas sehingga keberhasilan organisasi dapat tercapai. Disamping itu, perbaikan sistem Administrasi Keuangan pemerintahan merupakan suatu keharusan yang diimbangi dengan pengembangan aplikasi terintegrasi Kementerian Keuangan yaitu Sistem Aplikasi Keuangan Tingkat Instansi (SAKTI). Dalam melakukan pengelolaan aset pada Biro BMN, setiap pegawai memiliki role user level kewenangan SAKTI dengan lingkup yang berbeda-beda. Penelitian ini bertujuan melakukan seleksi klasifikasi user berdasarkan hasil penilaian kinerja dengan penerapan metode Kombinasi algoritma SVM dan KNN menggunakan bahasa pemrograman Python. Berdasarkan pengujian dengan sampel data sebesar ±313 data pegawai dan 18 variabel pegawai dengan atribut target berupa kelayakan yaitu dipertahankan maupun dipertimbangkan, diperoleh hasil akurasi sebesar 94% pada Kernel SVM RBF; nilai K=5; metrik Euclidean;  Dapat disimpulkan seleksi user aplikasi SAKTI menggunakan kombinasi algoritma SVM dan KNN dapat memberikan prediksi guna meningkatkan efektivitas dan efisiensi organisasi dalam penempatan pegawai yang sesuai dengan kompetensi pada Biro BMN Kementerian XYZ. Penelitian selanjutnya diharapkan dapat membandingkan kombinasi algoritma SVM dan KNN dengan metrik serta parameter yang lebih banyak.
Identification of Lumpy Skin Disease in Cattle with Image Classification using the Convolutional Neural Network Method Sentoso, Thedjo; Ardiansyah, Fachri; Tamuntuan, Virginia; Wangsa, Sabda Sastra; Kusrini, Kusrini; Kusnawi, Kusnawi
Sistemasi: Jurnal Sistem Informasi Vol 13, No 3 (2024): Sistemasi: Jurnal Sistem Informasi
Publisher : Program Studi Sistem Informasi Fakultas Teknik dan Ilmu Komputer

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32520/stmsi.v13i3.2569

Abstract

One of the problems often faced by cattle farmers is related to diseases in their cattle where one of the cattle diseases whose transmission rate is very fast is Lumpy Skin Disease (LSD). Currently, to identify the health of livestock, especially in cattle, is still very dependent on experts and of course this takes time, resulting in delays in the prevention and treatment of diseases in cattle, especially this LSD disease. The Convolutional Neural Network (CNN) algorithm is one of the algorithms can used for image classification of cows whether the cow is healthy or Lumpy. The stages of this research start from problem identification, literature study, data collection, algorithm implementation, testing, and performance evaluation results of the algorithm on cattle disease data. In this research, testing was conducted using three architectures for CNN: VGG16, VGG19, and ResNet50. The results of the experiment showed that VGG16 was the most effective architecture compared to VGG19 and ResNet50, with a training accuracy of 95.31% and a loss value of 0.1292, as well as a testing accuracy of 96.88% and a loss value of 0.102.
Analisis Sentimen Tempat Wisata Berdasarkan Ulasan pada Google Maps Menggunakan Algoritma Support Vector Machine: Sentiment Analysis of Tourist Attractions Based on Reviews on Google Maps Using the Support Vector Machine Algorithm Ipmawati, Joang; Saifulloh, Saifulloh; Kusnawi, Kusnawi
MALCOM: Indonesian Journal of Machine Learning and Computer Science Vol. 4 No. 1 (2024): MALCOM January 2024
Publisher : Institut Riset dan Publikasi Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.57152/malcom.v4i1.1066

Abstract

Era Revolusi Industri 4.0 ditandai oleh ketersediaan data yang melimpah, menciptakan peluang dalam proses pengambilan informasi. Salah satu proses pengambilan data tersebut mencakup pencarian informasi tentang tempat wisata di Yogyakarta (DIY). Proses pengambilan informasi ini dapat dilakukan melalui Google Maps, yang menyediakan detail seperti lokasi, jarak, bahkan ulasan pengunjung dalam bagian komentar, yang berasal dari ulasan tentang destinasi wisata tersebut. Dalam data informasi yang dikumpulkan, muncul berbagai masalah yang memerlukan identifikasi, mengarah pada gagasan penelitian untuk menganalisis sentimen terkait destinasi wisata dengan memanfaatkan ulasan pengguna di Google Maps. Metodologi penelitian yang digunakan dalam studi ini menggunakan Support Vector Machine (SVM) untuk mengategorikan ulasan ke dalam kategori sentimen positif, negatif, atau netral. Ulasan pengguna dari platform Google Maps diolah dan dilatih menggunakan SVM untuk mengidentifikasi pola sentimen. Hasil eksperimen menunjukkan efektivitas metode SVM dalam mengelola volume besar data ulasan untuk analisis sentimen, memberikan pemahaman yang lebih dalam tentang persepsi masyarakat terhadap destinasi wisata. Penelitian ini dapat berkontribusi pada pengembangan strategi pemasaran dan manajemen berdasarkan umpan balik pengguna secara real-time. Temuan penelitian mengenai kinerja metode SVM dalam klasifikasi analisis sentimen menggunakan Support Vector Machine (SVM) menunjukkan tingkat akurasi rata-rata sebesar 83,8% berdasarkan ulasan pengunjung di situs Google Maps.
PERBANDINGAN SEGMENTASI CITRA SENI TARI PENDET DAN SENI BELA DIRI PENCAK SILAT: PENDEKATAN DENGAN MULTIRES UNET Sudirman, San; Setyanto, Arief; Kusnawi, Kusnawi
Jurnal Informatika dan Teknik Elektro Terapan Vol. 12 No. 3 (2024)
Publisher : Universitas Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23960/jitet.v12i3.4331

Abstract

This research compares image segmentation of the Pendet dance art and the Pencak Silat martial art using the MultiRes U-Net approach. Research methods include data collection, data pre-processing, data sharing, evaluation, and results. Evaluation results using the Dice coefficient, Jaccard index, and Mean Squared Error (MSE) metrics show the best scores for each dataset. The results of this research can increase understanding of these two arts and cultures through deeper visual analysis. The results of the image segmentation evaluation between Pendet dance and Pencak Silat martial arts using the MultiRes UNET approach show the best scores for Dice Coefficient (DC), Jaccard index, and Mean Squared Error (MSE). The best scores for the Pendet dance dataset are 98.47, 99.23, and 8.20E-04, while for the Pencak Silat dataset they are 88.29, 85.98, and 4.52E-04. Evaluation shows a good level of similarity between the segmented image and the original image.
Design of Automatic Feeder with Adjustable Temperature, PH, and Weather for Catfish Antara, Pebri; Utami, Ema; Kusnawi, Kusnawi
Cerdika: Jurnal Ilmiah Indonesia Vol. 5 No. 4 (2025): Cerdika: Jurnal Ilmiah Indonesia
Publisher : Publikasi Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59141/cerdika.v5i4.2473

Abstract

Catfish is a fish that is consumed by many Indonesians and is one of the business opportunities. This can be a good prospect for the future with catfish farming. Even many restaurants and restaurants use this fish as one of the menus. Cultivating catfish is not easy, there are many parameters that need to be considered so that fish life can develop properly. Starting from sufficient water ph or according to the standard of living catfish, up to the air temperature. These factors will affect if catfish farms are ignored. Timely feeding is also a major factor that can have sufficient nutrition. With an automatic fish feed system and water quality monitoring, farmers' problems related to water quality can be monitored using sensors. Feeding can be done via a telegram bot with certain settings as needed.
INOVASI PENDIDIKAN MASA DEPAN DENGAN PEMANFAATAN TEKNOLOGI INFORMASI UNTUK MENINGKATAN KUALITAS PENDIDIKAN ANAK USIA DINI DI PKG PAUD GODEAN YOGYAKARTA Atmoko, Alfriadi Dwi; Yaqin, Ainul; Kusnawi
Jurnal Abdi Insani Vol 11 No 1 (2024): Jurnal Abdi Insani
Publisher : Universitas Mataram

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29303/abdiinsani.v11i1.1199

Abstract

Pendidikan Anak Usia Dini (PAUD) in Indonesia is an important foundation for building a better future generation. PAUD in Indonesia is currently growing rapidly because awareness of the importance of education grows from an early age. Based on reference data from the Central Statistics Agency (BPS) and the Ministry of Education and Culture (Kemendikbud), the number of children attending PAUD in Indonesia will increase to 11.6 million in 2022, and the proportion of enrollment of children aged 4 to 6 years will be 74.3% . According to article 1.14 in the Law of the Republic of Indonesia No. 20 of 2003, PAUD education plays a very important role in the development of a child's personality and prepares them for the transition to the next level of education. PAUD implementation in Godean sub-district is under the Kapanewon Godean Yogyakarta Cluster Activity Center (PKG) where there are 61 members. In terms of implementing PAUD, it is hoped that the preparation of learning, monitoring and evaluation and management of learning activities can achieve good quality PAUD education, but in practice it has been supported by computers but not yet supported by information technology. The method of implementing this service is by providing training in Utilization of Google Workspace features and filling out online report cards for PAUD and FGD students.
Analisis Rekomendasi untuk Meningkatkan Nilai Capability Level Domain APO 14 Pada COBIT 2019 Taryoko, Taryoko; Muhammad, Alva Hendi; Kusnawi, Kusnawi
Jurnal Ilmiah Universitas Batanghari Jambi Vol 24, No 1 (2024): Februari
Publisher : Universitas Batanghari Jambi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33087/jiubj.v24i1.4380

Abstract

The purpose of this study was to determine data management with consideration of the APO 14 domain at XYZ Agencies using the 2019 COBIT Framework. This research method uses a case study. The results of this study indicate that first, the capability level test value is entered at level 3, namely Establish. Second, the average value generated on the Capability level test value is 3.14 or 0.031, which means the XYZ agency So that it can be ensured that the XYZ agency has carried out the implementation process and is able to achieve process results in accordance with what is targeted in the APO domain 14. Third, the average GAP value produced is worth 3 with a difference of 1 value from the expected value in accordance with the 2019 COBIT provisions.
A Systematic Literature Review of Adaptive Machine Learning Approaches for Real-Time Fuel Efficiency Optimization in Open-Pit Mining Trucks Kusnawi; Mochamad Agung Wibowo; Ridwan Sanjaya
Jurnal Sisfokom (Sistem Informasi dan Komputer) Vol. 15 No. 01 (2026): JANUARY
Publisher : ISB Atma Luhur

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Fuel consumption in open-pit mining operations is a significant operational cost, making fuel efficiency an important research topic. This project seeks to investigate the use of adaptive machine learning (ML) methodologies to improve real-time fuel efficiency in mining trucks. A Systematic Literature Review (SLR) was conducted following the PRISMA protocol to examine 47 peer-reviewed articles published from 2015 to 2025. Thematic synthesis and bibliometric analysis identified five dominant categories of machine learning, with deep learning and fuzzy logic being the most common. Many studies have examined adaptive energy regulation for varying terrain and loads; however, only 20% have included driver behavior, highlighting a significant research gap. Reinforcement learning and hybrid systems show significant potential for scheduling and control in dynamic environments; however, they face challenges in real-time applications due to factors such as edge computing and limited data integration. This review describes advances in fuel optimization research through the integration of artificial intelligence, control theory, and mining logistics, and proposes future goals including the development of simplified models for vehicle applications, empirical testing in industrial fleets, and the utilization of behavior and telemetry data to enhance contextual awareness in systems
Integration of K-Means Clustering, Random Forest, and RFM Analysis for Optimizing Consumer Segmentation in Digital Advertising Strategies Joang Ipmawati; Kusnawi
Jurnal Sisfokom (Sistem Informasi dan Komputer) Vol. 15 No. 01 (2026): JANUARY
Publisher : ISB Atma Luhur

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32736/sisfokom.v15i01.2548

Abstract

In the era of data-driven marketing, accurate consumer segmentation is essential to improve the precision and impact of digital advertising. This study aims to produce more accurate consumer segmentation to support more targeted digital marketing strategies. The methods used include K-Means Clustering to group users based on digital behavior, RFM Analysis to evaluate user loyalty and interaction value with advertisements, and Random Forest to identify key factors influencing segmentation. The dataset includes demographic and behavioral information such as age, gender, income level, online duration, and interaction with digital ads. The results show that using five clusters (K=5) in K-Means Clustering yields optimal segmentation. RFM Analysis successfully categorizes users based on loyalty and engagement, while Random Forest identifies Click-Through Rate (CTR), Likes and Reactions, and Time Spent Online as the most influential variables in segmentation. This research contributes to improving the effectiveness of digital advertising campaigns and supports data-driven decision-making. The findings are significant for understanding consumer behavior patterns more deeply and for designing more efficient and relevant marketing strategies.
Co-Authors Abdulloh, Ferian Fauzi Afrig Aminuddin Agung Susanto Agung Susanto Ahmad Fauzi Ahmad Yusuf Ainnur Rafli Ainul Yaqin Ali Mustopa, Ali Alva Hendi Muhammad Andi Sunyoto Anggit Dwi Hartanto, Anggit Dwi Antara, Pebri Ardiansyah, Fachri Arief Setyanto Arifuddin, Danang Arnila Sandi Aryawijaya Asadulloh, Bima Pramudya Assani, Moh. Yushi Atin Hasanah Atin Hasanah Atmoko, Alfriadi Dwi Aulya, Fiola Utri BAYU SATRIYA, RIYAN Bhahari, Rifqi Hilal Candra Rusmana Cynthia Widodo Dede - Sandi Dede Husen Dede Sandi Dewi Kartika Dimaz Arno Prasetio Elsa Virantika Ema Utami Erna Utami Fajar Abdillah, Moh Fajar Aji Prayoga Haris, Ruby Hartatik Haryo, Wasis Hasirun Hasirun Hendrik Hendrik Henri Kurniawan Hidayatunnisa'i Huda, Luthfi Nurul Indra Irawanto Irawanto, Indra Joang Ipmawati Kanoena, Melcior Paitin Karisma Septa Kresna Khairullah, Irfan Khalil Khoerul Anam, Khoerul Khoirunnita, Aulia Khrisna Irham Fadhil Pratama Kusirini Kusrini Kusrini KUSRINI Kusrini Kusrini - - Kusrini Kusrini Kusrini Kusrini Kusrini Kusrini Kusrini Kusrini Kusrini Kusrini Kusrini, Kusrini M Andika Fadhil Eka Putra M. Nurul Wathani Maehendrayuga, Arief Majid Rahardi Maringka, Raissa Mashuri, Ahmad Sanusi Mochamad Agung Wibowo Muh. Syarif Hidayatullah Muhammad Firdaus Abdi Muhammad Firdaus Abdi Muhammad Husein Budiraharjo Muhammad Irvan Shandika Muhammad Reza Riansyah Nayoma, Fisan Syafa Neni Firda Wardani Tan Ngaeni, Nurus Sarifatul Nurul Zalza Bilal Jannah Omar Muhammad Altoumi Alsyaibani Pandiangan, Van Daarten Pattimura, Yudha Bagas Pebri Antara Pitaloka, Nadhira Triadha Pramono, Aldi Yogie Prastyo, Rahmat Prema Adhitya Dharma Kusumah Puji Prabowo, Dwi Qurniaty, Charlen Alta Raffa Nur Listiawan Dhito Eka Santoso Rahayu, Christa Putri RAMADHAN, SYAIFUL Ridwan Sanjaya Rifda Faticha Alfa Aziza Rita Wati Ritham Tuntun Rizal Khadarusman Rodney Maringka Rohim, Ni’matur saifulloh Saifulloh, saifulloh Salman Alfaris Salman Alfaris, Salman San Sudirman Sekarsih, Fitria Nuraini Sentoso, Thedjo Sepriadi - Bumbungan Sepriadi Bumbungan Sri Yanto Qodarbaskoro Sry Faslia Hamka Sudirman, San Suyatmi Suyatmi Suyatmi Suyatmi Syaiful Huda Syaiful Ramadhan Tamuntuan, Virginia Taryoko, Taryoko Teguh Arlovin Wahyu Pujiharto, Eka Wangsa, Sabda Sastra Widodo, Cynthia Widyanto, Agung Wirawan, Tegar Yusa, Aldo Yusrinnatul Jinana triadin Yuza, Adela Zaenul Amri