p-Index From 2021 - 2026
11.441
P-Index
This Author published in this journals
All Journal Bulletin of Electrical Engineering and Informatics Nuansa Informatika Jurnal Informatika dan Teknik Elektro Terapan Sistemasi: Jurnal Sistem Informasi JOIV : International Journal on Informatics Visualization Sinkron : Jurnal dan Penelitian Teknik Informatika Jurnal Ilmiah Universitas Batanghari Jambi JURNAL MEDIA INFORMATIKA BUDIDARMA CogITo Smart Journal Jurnal Informatika Universitas Pamulang JITTER (Jurnal Ilmiah Teknologi Informasi Terapan) Jurnal Sisfokom (Sistem Informasi dan Komputer) ILKOM Jurnal Ilmiah JurTI (JURNAL TEKNOLOGI INFORMASI) Jurnal Teknologi Terpadu EDUMATIC: Jurnal Pendidikan Informatika Building of Informatics, Technology and Science Jutisi: Jurnal Ilmiah Teknik Informatika dan Sistem Informasi Technologia: Jurnal Ilmiah Aisyah Journal of Informatics and Electrical Engineering Indonesian Journal of Business Intelligence (IJUBI) bit-Tech Aviation Electronics, Information Technology, Telecommunications, Electricals, Controls (AVITEC) Respati Jurnal Abdi Insani JTIULM (Jurnal Teknologi Informasi Universitas Lambung Mangkurat) Journal of Computer System and Informatics (JoSYC) Jurnal Graha Pengabdian Infotek : Jurnal Informatika dan Teknologi jurnal syntax admiration TEPIAN Jurnal Teknologi Informatika dan Komputer Jurnal Teknik Informatika (JUTIF) Jurnal Teknimedia: Teknologi Informasi dan Multimedia JNANALOKA SENADA : Semangat Nasional Dalam MengabdI Journal of Electrical Engineering and Computer (JEECOM) Jurnal FASILKOM (teknologi inFormASi dan ILmu KOMputer) Jurnal Informatika dan Teknologi Komputer ( J-ICOM) Jurnal Sisfotek Global Jurnal Informatika Teknologi dan Sains (Jinteks) Malcom: Indonesian Journal of Machine Learning and Computer Science Cerdika: Jurnal Ilmiah Indonesia SENADA : Semangat Nasional Dalam Mengabdi Intechno Journal : Information Technology Journal The Indonesian Journal of Computer Science SITEKNIK: Sistem Informasi, Teknik dan Teknologi Terapan Jurnal Teknik AMATA Jurnal TAM (Technology Acceptance Model)
Claim Missing Document
Check
Articles

Comparative Analysis of Long Short-Term Memory Architecture for Text Classification Fajar Abdillah, Moh; Kusnawi, Kusnawi
ILKOM Jurnal Ilmiah Vol 15, No 3 (2023)
Publisher : Prodi Teknik Informatika FIK Universitas Muslim Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33096/ilkom.v15i3.1906.455-464

Abstract

Text classification which is a part of NLP is a grouping of objects in the form of text based on certain characteristics that show similarities between one document and another. One of methods used in text classification is LSTM. The performance of the LSTM method itself is influenced by several things such as datasets, architecture, and tools used to classify text. On this occasion, researchers analyse the effect of the number of layers in the LSTM architecture on the performance generated by the LSTM method. This research uses IMDB movie reviews data with a total of 50,000 data. The data consists of positive, negative data and there is data that does not yet have a label. IMDB Movie Reviews data go through several stages as follows: Data collection, data pre-processing, conversion to numerical format, text embedding using the pre-trained word embedding model: Fastext, train and test classification model using LSTM, finally validate and test the model so that the results are obtained from the stages of this research. The results of this study show that the one-layer LSTM architecture has the best accuracy compared to two-layer and three-layer LSTM with training accuracy and testing accuracy of one-layer LSTM which are 0.856 and 0.867. While the training accuracy and testing accuracy on two-layer LSTM are 0.846 and 0.854, the training accuracy and testing accuracy on three layers are 0.848 and 864.
Pengaruh Keseimbangan Data terhadap Akurasi Model Support Vector Machine pada Data Set Donor Darah Widyanto, Agung; Kusrini; Kusnawi
Jurnal Teknologi Terpadu Vol 9 No 2 (2023): Desember, 2023
Publisher : LPPM STT Terpadu Nurul Fikri

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.54914/jtt.v9i2.771

Abstract

In classification, unbalanced data is expected. Unbalanced data has an inequality ratio between the majority and minority classes. Models trained with unbalanced data tend to predict the minority class as the majority class. This study aims to determine the effect of data balance on the accuracy of the Support Vector Machine (SVM) classification model. The data set used is the blood donor data set downloaded from the repository belonging to the University of California, Irvine (UCI). The Waikato Environment for Knowledge Analysis (WEKA) tool was chosen to present the results of training development and model testing. The research framework scheme is used as a reference for knowledge flow. In scenario 1, data pre-processing includes handling missing values using mean-impulse and normalizing MinMax scaling. With a data set that has an inequality ratio of 1:3, the SVM classifier gets an accuracy performance of 76.7%. In scenario 2, post-pre-processing is done by balancing the data using the Synthetic Minority Oversampling Technique (SMOTE). SVM classifier gets 69.8% accuracy performance. Model performance is evaluated using confusion metrics. The gap in recall values for each class is very high in scenario 1 (2.8% and 99.8%). Things are different in scenario 2 (75.6% and 64%). The test results of 748 samples obtained an accuracy of 76.7% for the scenario-1 model and 93.2% for the scenario-2 model. This proves that the balance of data influences the accuracy of the SVM classification model.
Comparison of Naïve Bayes and SVM in Sentiment Analysis of Product Reviews on Marketplaces Nurul Zalza Bilal Jannah; Kusnawi, Kusnawi
Sinkron : jurnal dan penelitian teknik informatika Vol. 8 No. 2 (2024): Article Research Volume 8 Issue 2, April 2024
Publisher : Politeknik Ganesha Medan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33395/sinkron.v8i2.13559

Abstract

At this time more and more people are switching to shopping online in existing marketplaces such as Shopee. Marketplaces provide various advantages and disadvantages to customers such as lower costs and goods sent not according to orders. Product reviews from customers greatly affect the sales level of business people so that sentiment analysis is carried out. The importance of conducting sentiment analysis of product reviews in the marketplace is to add an overview of how the product is received by users. This research uses Naïve Bayes and SVM algorithms for sentiment analysis of beauty care product review datasets obtained from Shopee scraping results. This research implements k fold cross validation for data splitting process of 10 folds. The Naïve Bayes algorithm obtained the highest accuracy value of 85.53% on fold 2 and the lowest accuracy value of 77.16% on fold 3. While the SVM algorithm obtained the highest accuracy value of 88.58% on fold 2 and the lowest accuracy value of 82.99% on fold 7. With this it is stated that SVM can work better for sentiment analysis of beauty care product reviews on the Shopee marketplace because it gets a higher average accuracy value of 86.14% compared to the Naïve Bayes algorithm.
Clustering Analysis of Socio-Economic Districts/Cities In East Java Province Using PCA And Hierarchical Clustering Methods Bhahari, Rifqi Hilal; Kusnawi, Kusnawi
Sinkron : jurnal dan penelitian teknik informatika Vol. 8 No. 4 (2024): Article Research Volume 8 Issue 4, October 2024
Publisher : Politeknik Ganesha Medan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33395/sinkron.v8i4.14078

Abstract

This study aims to analyze the socio-economic conditions of districts/cities in East Java using Principal Component Analysis (PCA) and Hierarchical Clustering. Socio-economic data for 2023 from 38 districts/cities includes the percentage of poor people, regional GDP, life expectancy, average years of schooling, per capita expenditure, and unemployment rate. PCA was used to reduce the dimensionality of the data, facilitating analysis and visualization. The reduced data was then analyzed using Hierarchical Clustering to group districts based on similar socio-economic characteristics. The clustering results were evaluated with the Silhouette Index and Davies-Bouldin Index. This study identified four main clusters with different socio-economic characteristics. The best clusters have high regional GDP, life expectancy, average years of schooling, and high per capita expenditure and low unemployment rates. The worst clusters show a high percentage of poor people and high unemployment rates. These results assist the government in designing more effective policies to improve welfare in East Java.
Enhancing quality measurement for visible and invisible watermarking based on M-SVD and DCT Kusnawi, Kusnawi; Ipmawati, Joang; Puji Prabowo, Dwi
Bulletin of Electrical Engineering and Informatics Vol 13, No 4: August 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v13i4.7884

Abstract

This study introduces an advanced method for evaluating non-blind watermarking quality, leveraging both visible and invisible watermarking techniques grounded in principles of discrete cosine transform (DCT) and modified singular value decomposition (M-SVD). The primary focus is to refine the assessment process of watermarked images by integrating M-SVD, known for its efficacy in measuring image quality and watermarking performance. Results from the M-SVD implementation exhibit a striking resemblance to the original images. The mean squared error (MSE) values for watermarked images range from 0.0003 to 0.0168, while peak signal-to-noise ratio (PSNR) values vary between 42.52 dB and 82.72 dB. These outcomes underscore the potential of DCT and M-SVD techniques in bolstering watermarking processes, especially in invisible watermarking contexts.
ANALISIS KEJADIAN STUNTING DI PROVINSI NUSA TENGGARA BARAT MENGGUNAKAN METODE PATH ANALYSIS Assani, Moh. Yushi; Kusrini Kusrini; Kusnawi Kusnawi
TEKNIMEDIA: Teknologi Informasi dan Multimedia Vol. 5 No. 1 (2024): Juni 2024
Publisher : Badan Penelitian dan Pengabdian Masyarakat (BP2M) STMIK Syaikh Zainuddin NW Anjani

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.46764/teknimedia.v5i1.188

Abstract

Stunting is a problem in many developing countries, including Indonesia. Toddlers are a critical period for a child's development, this period can determine the child's level of development in the future. Not preparing yourself well at this stage can cause growth and development problems in children, including delays in growth and development. Stunting can cause suboptimal brain development and delays in motor development in children. Based on the results of the analysis, it is known that there is a direct effect between the husband's age on the baby's birth weight with a value of -0.234. Apart from that, the husband's smoking habit also has a direct effect on the baby's birth weight with a value of -0.176. Overall, the results of the path analysis show that husband's characteristics such as age, education, occupation, and smoking habits have a significant effect on the baby's birth weight. Husband's age is negatively correlated, while education and employment are positively correlated. These results need to be followed up with intervention and education for prospective fathers to improve the health of mothers and babies.
Leveraging Various Feature Selection Methods for Churn Prediction Using Various Machine Learning Algorithms Kusnawi, Kusnawi; Ipmawati, Joang; Asadulloh, Bima Pramudya; Aminuddin, Afrig; Abdulloh, Ferian Fauzi; Rahardi, Majid
JOIV : International Journal on Informatics Visualization Vol 8, No 2 (2024)
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62527/joiv.8.2.2453

Abstract

This study aims to examine the effect of customer experience on customer retention at DQLab Telco, using machine learning techniques to predict customer churn. The study uses a dataset of 6590 customers of DQLab Telco, which contains various features related to their service usage and satisfaction. The data includes various features such as gender, tenure, phone service, internet service, monthly charges, and total charges. These features represent the demographic and service usage information of the customers. The study applies several feature selection methods, such as ANOVA, Recursive Feature Elimination, Feature Importance, and Pearson Correlation, to select the most relevant features for churn prediction. The study also compares three machine learning algorithms, namely Logistic Regression, Random Forest, and Gradient Boosting, to build and evaluate the prediction models. This study finds that Logistic Regression without feature selection achieves the highest accuracy of 79.47%, while Random Forest with Feature Importance and Gradient Boosting with Recursive Feature Elimination achieve accuracy of 77.60% and 79.86%, respectively. The study also identifies the features influencing customer churn most, such as monthly charges, tenure, partner, senior citizen, internet service, paperless billing, and TV streaming. The study provides valuable insights for DQLab Telco in developing customer churn reduction strategies based on predictive models and influential features. The study also suggests that feature selection and machine learning algorithms play a vital role in improving the accuracy of churn prediction and should be customized according to the data context.
Prediksi Banjir Di Dki Jakarta Dengan Menggunakan Algoritma K-Means Dan Random Forest Haris, Ruby; Haryo, Wasis; Wahyu Pujiharto, Eka; Yuza, Adela; Kusrini, Kusrini; Kusnawi, Kusnawi
Jurnal Informatika dan Teknologi Komputer (J-ICOM) Vol 5 No 1 (2024): Jurnal Informatika dan Teknologi Komputer ( JICOM)
Publisher : Universitas Samudra

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55377/j-icom.v5i1.8153

Abstract

This research aims to develop a flood prediction method that can be used to implement effective prevention and mitigation measures in dealing with frequent natural disasters in DKI Jakarta. The approach used in this study involves the utilization of Machine Learning techniques with a combination of K-Means and Random Forest algorithms. Historical data on water gates, water levels, and other relevant factors are used as inputs for the development of the flood prediction model. The K-Means method is employed to cluster the water level data, and the results of the K-Means clustering process are then used as parameters in the Random Forest method. A total of 20 experiments were conducted, varying the value of k from 1 to 20 in the K-Means algorithm. The experimental results show that the best accuracy and f-1 score were achieved at k=14, with an accuracy rate of 95% and an f-1 score of 90%. This indicates that the developed flood prediction model is capable of providing accurate and reliable predictions in identifying flood potential. This research holds significant implications for flood management in vulnerable cities. With an effective flood prediction method, prevention and mitigation measures can be implemented more efficiently, thereby reducing the negative impacts caused by floods.
DETEKSI CITRA DIGITAL MENGGUNAKAN ALGORITMA CNN DENGAN MODEL NORMALISASI RGB Khairullah, Irfan Khalil; Hartanto, Anggit Dwi; Yusa, Aldo; Hartatik, Hartatik; Kusnawi, Kusnawi
Intechno Journal : Information Technology Journal Vol. 2 No. 2 (2020): December
Publisher : Universitas Amikom Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24076/intechnojournal.2020v2i2.1545

Abstract

Pengolahan citra digital ialah usaha untuk melakukan perubahan sebuah citra objek berupa gambar atau video menjadi citra obyek lainnya. Citra yang dimaksud berupa objek yang berupa citra gambar yang berasal dari sensor vision atau alat tangkap gambar berupa kamera. Banyak penelitian yang dilakukan untuk memproses pengolahan citra digital. Penelitian sebelum-sebelumnya menggunakan bermacam - macam metode untuk pengujian citra digital. Salah satunya adalah penggunaan metode naïve bayes dan Learning Vector Quantization atau disingkat LVQ. Penelitian menggunakan metode naïve bayes mendapatkan akurasi sekitar 80%. Sedangkan dengan LVQ didapatkan presentase akurasi sebesar 83,5%. Pada penelitian dengan menggunakan metode CNN di dapatkan rata-rata akurasi dengan beberapa kali pengulangan percobaan sebesar 90%. Berarti bahwa penelitian dengan metode CNN meningkatkan tingkat akurasi yang didapat dari penelitian - penelitian sebelumnya. Diharapkan pada penelitian berikutnya disarankan menggunakan metode dan model yang lain, supaya didapat hasil yang lebih baik
Implementasi Algoritma Naïve Bayes Dalam Mengidentifikasi Jenis Penyakit Cacar Dengan Image Processing Pattimura, Yudha Bagas; Kanoena, Melcior Paitin; Hartanto, Anggit Dwi; Hartatik, Hartatik; Kusnawi, Kusnawi
Intechno Journal : Information Technology Journal Vol. 5 No. 1 (2023): July
Publisher : Universitas Amikom Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24076/intechnojournal.2023v5i1.1571

Abstract

Cacar merupakan salah satu penyakit kulit yang sering diderita banyak masyarakat mulai dari anak bayi sampai orang tua. Cacar memliki beberapa jenis yang antara lain adalah cacar air (Quipperian), cacar api (herpes zoster) dan cacar monyet, seluruh penyakit ini semuanya dapat menular ke seama manusia melalui kontak lansung, bersin, batuk atau tersentuh dengan isi gelembung cacar yang pecah. Minimnya pengetahuan masyarakat dan tidak adanya penyuluahan dari pemerintah membuat masyarakat tidak mengetahui akan perbedaan jenis-jenis cacar yang diderita dan dapat terjadinya kesalahan dalam pengobatan. Dalam penilitian ini kami menggunakan image processing dengan metode histogram untuk ekstraksi fitur tekstur cacar tersebut serta menggunakan dengan metode klasifikasi naïve bayes dalam mengklasifikasi jenis cacar yang diderita oleh pasien. Dari penilitian yang kami lakukan menunjukan bahwa mengklasifikasi nilai ekstraksi fitur tekstur citra cacar dengan metode naïve bayes memperolehonilai akurasi sebesar 75%.
Co-Authors Abdulloh, Ferian Fauzi Afrig Aminuddin Agung Susanto Agung Susanto Ahmad Fauzi Ahmad Yusuf Ainnur Rafli Ainul Yaqin Ali Mustopa, Ali Alva Hendi Muhammad Andi Sunyoto Anggit Dwi Hartanto, Anggit Dwi Antara, Pebri Ardiansyah, Fachri Arief Setyanto Arifuddin, Danang Arnila Sandi Aryawijaya Asadulloh, Bima Pramudya Assani, Moh. Yushi Atin Hasanah Atin Hasanah Atmoko, Alfriadi Dwi Aulya, Fiola Utri BAYU SATRIYA, RIYAN Bhahari, Rifqi Hilal Candra Rusmana Cynthia Widodo Dede - Sandi Dede Husen Dede Sandi Dewi Kartika Dimaz Arno Prasetio Elsa Virantika Ema Utami Erna Utami Fajar Abdillah, Moh Fajar Aji Prayoga Haris, Ruby Hartatik Haryo, Wasis Hasirun Hasirun Hendrik Hendrik Henri Kurniawan Hidayatunnisa'i Huda, Luthfi Nurul Indra Irawanto Irawanto, Indra Joang Ipmawati Kanoena, Melcior Paitin Karisma Septa Kresna Khairullah, Irfan Khalil Khoerul Anam, Khoerul Khoirunnita, Aulia Khrisna Irham Fadhil Pratama Kusirini Kusrini Kusrini KUSRINI Kusrini Kusrini - - Kusrini Kusrini Kusrini Kusrini Kusrini Kusrini Kusrini Kusrini Kusrini Kusrini Kusrini, Kusrini M Andika Fadhil Eka Putra M. Nurul Wathani Maehendrayuga, Arief Majid Rahardi Maringka, Raissa Mashuri, Ahmad Sanusi Mochamad Agung Wibowo Muh. Syarif Hidayatullah Muhammad Firdaus Abdi Muhammad Firdaus Abdi Muhammad Husein Budiraharjo Muhammad Irvan Shandika Muhammad Reza Riansyah Nayoma, Fisan Syafa Neni Firda Wardani Tan Ngaeni, Nurus Sarifatul Nurul Zalza Bilal Jannah Omar Muhammad Altoumi Alsyaibani Pandiangan, Van Daarten Pattimura, Yudha Bagas Pebri Antara Pitaloka, Nadhira Triadha Pramono, Aldi Yogie Prastyo, Rahmat Prema Adhitya Dharma Kusumah Puji Prabowo, Dwi Qurniaty, Charlen Alta Raffa Nur Listiawan Dhito Eka Santoso Rahayu, Christa Putri RAMADHAN, SYAIFUL Ridwan Sanjaya Rifda Faticha Alfa Aziza Rita Wati Ritham Tuntun Rizal Khadarusman Rodney Maringka Rohim, Ni’matur saifulloh Saifulloh, saifulloh Salman Alfaris Salman Alfaris, Salman San Sudirman Sekarsih, Fitria Nuraini Sentoso, Thedjo Sepriadi - Bumbungan Sepriadi Bumbungan Sri Yanto Qodarbaskoro Sry Faslia Hamka Sudirman, San Suyatmi Suyatmi Suyatmi Suyatmi Syaiful Huda Syaiful Ramadhan Tamuntuan, Virginia Taryoko, Taryoko Teguh Arlovin triadin, Yusrinnatul Jinana Wahyu Pujiharto, Eka Wangsa, Sabda Sastra Widodo, Cynthia Widyanto, Agung Wirawan, Tegar Yusa, Aldo Yuza, Adela Zaenul Amri