Sri Widiyantoro
Global Geophysics Research Division, Faculty Of Mining And Petroleum Engineering, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung, Jawa Barat 40132, Indonesia

Published : 21 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 21 Documents
Search

Seismic Velocity Structures beneath the Guntur Volcano Complex, West Java, Derived from Simultaneous Tomographic Inversion and Hypocenter Relocation Andri Dian Nugraha; Sri Widiyantoro; Awan Gunawan; Gede Suantika
Journal of Mathematical and Fundamental Sciences Vol. 45 No. 1 (2013)
Publisher : Institute for Research and Community Services (LPPM) ITB

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/j.math.fund.sci.2013.45.1.2

Abstract

We conducted travel time tomographic inversion to image seismic velocity structures (Vp, Vs, and Vp/Vs ratio) with simultaneous hypocenter adjustment beneath the Guntur volcano complex that is located in the Garut district, West Java province, Indonesia. The Guntur volcano is one of the active volcanoes in Indonesia, although large eruptions have not occurred for about 160 years. We used volcanic and tectonic earthquakes catalog data from seismic stations deployed by Centre for Volcanology and Geological Hazard Mitigation (CVGHM). For the tomographic inversion procedure, we set grid nodes with a horizontal spacing of 2 x 2 km2 and an average vertical spacing of 2 km. Our results show low Vp, low Vs, and high Vp/Vs ratio regions beneath the Guntur crater and the Gandapura caldera at depths of 6-8 km and 7-9 km, respectively. These features can be associated with amelt-filled pore rock structure. However, a low Vp/Vs ratio and low velocities are exhibited beneath the Kamojang caldera at depths of 2-6 km that may be associated with rock with H2O-filled pores with a high aspect ratio.
Preliminary Estimation of Engineering Bedrock Depths from Microtremor Array Measurements in Solo, Central Java, Indonesia Sorja Koesuma; Mohamad Ridwan; Andri Dian Nugraha; Sri Widiyantoro; Yoichi Fukuda
Journal of Mathematical and Fundamental Sciences Vol. 49 No. 3 (2017)
Publisher : Institute for Research and Community Services (LPPM) ITB

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/j.math.fund.sci.2017.49.3.8

Abstract

In the last decade the city of Solo, located in Central Java, Indonesia, has grown significantly and become a major city. Many industries and hotels have been built in the city and its surroundings. This study aimed to determine the engineering bedrock depths in Solo, an important parameter in seismic hazard analysis. The microtremor array method was used to obtain 1D S-wave velocity profiles and construct layer depth maps. The spatial autocorrelation (SPAC) method was used to calculate the dispersion curves, while the S-wave velocity structure was derived using a genetic algorithm (GA). The results of the S-wave velocity structure in Solo show that there are four stratigraphic layers, where the engineering bedrock depths in Solo exist within the range from 145 to 185 m. The shape of the bedrock basin is elongated in an east-west direction.
RELOKASI HIPOSENTER GEMPABUMI WILAYAH JAWA MENGGUNAKAN TEKNIK DOUBLE DIFFERENCE Bambang Sunardi; Supriyanto Rohadi; Masturyono Masturyono; Sri Widiyantoro; Sulastri Sulastri; Pupung Susilanto; Thomas Hardy; Wiko Setyonegoro
Jurnal Meteorologi dan Geofisika Vol 13, No 3 (2012)
Publisher : Pusat Penelitian dan Pengembangan BMKG

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (638.777 KB) | DOI: 10.31172/jmg.v13i3.133

Abstract

Relokasi hiposenter gempabumi penting dilakukan untuk mendapatkan lokasi gempabumi dengan ketelitian yang tinggi, diperlukan untuk pemetaan kerawanan gempabumi, studi struktur kecepatan, analisis seismisitas untuk studi global maupun studi lokal dan dalam analisis struktur detail seperti halnya identifikasi zona patahan dan sebaran serta orientasi patahan mikro. Salah satu teknik yang sekarang ini digunakan untuk merelokasi gempabumi adalah algoritma double difference (perbedaan ganda). Relokasi dilakukan terhadap data gempabumi BMKG yang terjadi di wilayah Jawa yang terletak pada 105°-115°BT dan 4°–12°LS. Jumlah gempabumi sebanyak 1352 kejadian. Jaringan stasiun  pencatat yang dipergunakan sebanyak 47 buah. Hasil relokasi menunjukkan pergeseran hiposenter lebih dari 50 km sebanyak 7 gempabumi. Pergeseran hiposenter menyebar ke segala arah dan tidak memiliki kecenderungan ke arah tertentu, namun demikian perubahan hiposenter terbanyak ke arah barat. Relokasi gempabumi dengan kedalaman awal 10 km menunjukkan pergeseran yang random. Relokasi menggunakan hypoDD menunjukkan peningkatan kualitas bila dilihat dari distribusi residual.  Relocation of earthquake hypocenter is important for obtaining an very accurate earthquake location which is needed for mapping of earthquakes vulnerability, velocity structure study, global and local studies of seismicity analysis and detail structural analysis as well as identification of the fault zone, distribution and orientation of microfracture. One technique currently used to relocate earthquakes is double difference algorithm. Relocation performed on BMKG earthquake data that occurred on Java region, located on 105°-115°E and 4°-12°S. The total number of earthquakes are 1352 events. We used 47 recording station networks. Hypocenter relocation results showed 7 earthquakes shift more than 50 km. Shift in hypocenter spread in all directions and do not have a tendency, however, most hypocenter changes to west. Relocation of initial depth 10 km earthquakes showed random shifst. Relocation using hypoDD showed an increase in quality when viewed from the residual distribution.
PENCITRAAN TOMOGRAFI ATENUASI SEISMIK TIGA-DIMENSI GUNUNG GUNTUR MENGGUNAKAN METODE RASIO SPEKTRA Gede Suantika; Sri Widiyantoro
Jurnal Meteorologi dan Geofisika Vol 9, No 2 (2008)
Publisher : Pusat Penelitian dan Pengembangan BMKG

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (2354.356 KB) | DOI: 10.31172/jmg.v9i2.26

Abstract

Karakteristik medium dapat digambarkan oleh parameter fisis seperti kecepatan dan atenuasi seismik. Dalam studi tomografi seismik, amplitudo dan waktu tempuh gelombang P dan S digunakan untuk mencitrakan struktur internal Bumi. Objek penelitian ini adalah gunung Guntur yang merupakan salah satu gunungapi aktif di Jawa Barat. Ruang lingkup daerah penelitian adalah 20x20x20 km3 dengan ukuran blok parameterisasi 2x2x2 km3. Berdasarkan beberapa data seismogram telah ditentukan posisi hiposenter dengan menggunakan metode 3 lingkaran yang didetailkan dengan metode grid search. Metode inversi leastsquare (LSQR) digunakan untuk proses inversi kecepatan dan atenuasi seismik. Data masukkan untuk inversi kecepatan adalah waktu tunda (δt) yang didefinisikan sebagai selisih antara waktu tempuh hasil observasi dengan waktu tempuh dari model referensi. Sedangkan input untuk inversi atenuasi seismik berupa atenuasi diferensial (∆tsp*) yang diperoleh dengan perhitungan rasio spektra. Hasil pengolahan data menunjukkan bahwa distribusi hiposenter terkonsentrasi pada interval kedalaman 1-6 km dari puncak Guntur. Citra tomogram kecepatan dan atenuasi seismik menunjukkan zona anomali kecepatan negatif dan atenuasi tinggi yang secara konsisten terletak di bawah puncak Guntur, kaldera Gandapura, dan kawah Kamojang. Zona tersebut selanjutnya dapat diinterpretasikan sebagai zona keberadaan materi panas yang kemungkinan berasosiasi dengan dapur magma. Characteristics of a medium could be defined by physical parameters such as seismic velocity and attenuation. In seismic tomography studies, the amplitude and travel time of P- and S-waves have been used to image the Earth’s internal structure. The object of this study is the Guntur volcano that is one of active volcanoes in West Java. The study area covers a 20x20x20 km3 volume with a block size used in the parameterization of 2x2x2 km3. Based on several seismograms, hypocenter locations have been determined using the three circles intersection method followed by the grid search method in detail. The leastsquare (LSQR) method has used to process the seismic velocity and attenuation inversion. The input data for velocity inversion are delay time (δt) defined as the difference between the observed travel time of seismic waves in the Earth and the calculated traveltime in the reference velocity model. Whereas the input for seismic attenuation inversion is the differential attenuation (∆tsp*) obtained from the spectral ratio measurement. The study results show that distribution of hypocenters is concentrated in the depth interval of 1-6 km from the top of Guntur. The seismic velocity and attenuation tomograms depict a consistent low velocity zone and a high attenuation zone beneath the Guntur summit, and the Gandapura and Kamojang calderas. This zone is interpreted to be associated with hot materials that may indicate the magma chamber.
Penentuan Posisi Hiposenter Gempabumi dengan Menggunakan Metoda Guided Grid Search dan Model Struktur Kecepatan Tiga Dimensi Hendro Nugroho; Sri Widiyantoro; Gunawan Ibrahim
Jurnal Meteorologi dan Geofisika Vol 8, No 1 (2007)
Publisher : Pusat Penelitian dan Pengembangan BMKG

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (139.792 KB) | DOI: 10.31172/jmg.v8i1.3

Abstract

Salah satu penelitian ilmu kebumian yang perlu dilakukan untuk membantu upaya mitigasi bencana gempabumi adalah menentukan pusat gempa dengan presisi tinggi. Dalam hal ini ketelitian sangat diperlukan oleh karena adanya heterogenitas materi bumi yang dilewati gelombang gempa dari hiposenter ke stasiun pencatat. Oleh karena itu dengan bantuan model geotomografi (model struktur 3D kecepatan rambat gelombang gempa) diharapkan akan dapat diperoleh posisi sumber gempa yang lebih baik. Untuk studi ini daerah penelitian yang diambil adalah Jawa dan sekitarnya, yaitu : 7° LS - 11° LS dan 105° BT - 114° BT. Data yang digunakan adalah waktu tiba gelombang P dari seismogram yang direkam pada seismograf broadband di Indonesia. Penentuan hiposenter menggunakan metoda guided grid search dengan model kecepatan 3D untuk busur Sunda. Hasil penentuan hiposenter gempa dengan pendekatan ini memberikan tingkat kesalahan yang lebih kecil dibandingkan dengan jika digunakan model kecepatan 1D.
STUDI HAZARD SEISMIK DAN HUBUNGANNYA DENGAN INTENSITAS SEISMIK DI PULAU SUMATERA DAN SEKITARNYA Edy Santoso; Sri Widiyantoro; I Nyoman Sukanta
Jurnal Meteorologi dan Geofisika Vol 12, No 2 (2011)
Publisher : Pusat Penelitian dan Pengembangan BMKG

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31172/jmg.v12i2.93

Abstract

Zona subduksi di sepanjang pantai barat dan sesar aktif yang berada di pulau Sumatera merupakan sumber gempa bumi yang aktif. Upaya peningkatan mitigasi di wilayah Sumatera menjadi bagian yang penting, untuk itu diperlukan suatu studi hazard seismik dan hubungannya dengan intensitas seismik di pulau Sumatera dan sekitarnya. Studi ini menggunakan data dukung seperti data katalog gempa bumi, data sesar, data subduksi, data intensitas seismik dan data pga dari rekaman akselerograf BMKG. Berdasarkan hasil studi hazard seismik, diperoleh beberapa kota besar di Sumatra yang mempunyai hazard seismik tinggi seperti: Banda Aceh, Padang, Bengkulu dan Bandar Lampung. Hasil studi hubungan empiris antara nilai percepatan tanah maksimum (PGA) rata - rata dan data intensitas seismik (MMI) observasi diperoleh rumusan:  I (MMI) = 0.008 * PGA (gal) + 3.159. Berdasarkan pendekatan hasil studi sementara wilayah Sumatera dengan beberapa hasil penelitian para ahli luar negeri, maka rumusan empiris Wald et al. (1999) mempunyai hasil yang cukup dekat dengan hasil studi pada nilai PGA 0 -200 gal. Sedangkan rumusan empiris Lepolt (2008) untuk nilai PGA 200-1000 gal. The existence of the subduction zone along the west coast and active faults in Sumatra is an active source of earthquakes. Increased mitigation efforts in the region became an important part of Sumatra. It required a study of seismic hazard and its relationship with seismic intensity on the island of Sumatra and surrounding areas. This study used data supporting such an earthquake catalog data, data delivery, data subduction, earthquake intensity data and PGA data from recording accelerograph BMKG based on the results of seismic hazard studies, acquired several major cities in Sumatra that have a high seismic hazard such as Banda Aceh, Padang, Bengkulu and Bandar Lampung. The results of an empirical study of the relationship between rate the value of maximum ground acceleration (PGA) and seismic intensity (MMI) observations obtained by the formula: I (MMI) = 0008 * PGA (gal) + 3159. Based on the approach to the study while the region of Sumatra by several findings by scientists abroad, then the empirical formulation of Wald et al. (1999) have results quite close to the results of studies on the PGA 0 -200 gal. While the empirical formula Lepolt (2008) for the PGA 200-1000 gal.
ANALISIS HAZARD GEMPA DAN ISOSEISMAL UNTUK WILAYAH JAWA-BALI-NTB Jimmi Nugraha; Guntur Pasau; Bambang Sunardi; Sri Widiyantoro
Jurnal Meteorologi dan Geofisika Vol 15, No 1 (2014)
Publisher : Pusat Penelitian dan Pengembangan BMKG

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31172/jmg.v15i1.168

Abstract

Jawa, Bali dan NTB merupakan wilayah rawan bencana gempa. Untuk meminimalisasi dampak bencana tersebut, upaya mitigasi perlu dilakukan secara optimal. Salah satunya melalui penelitian hazard kegempaan. Penelitian ini bertujuan untuk menganalisis hazard gempa dan isoseismal daerah penelitian. Tahapan penelitian meliputi studi literatur, pengumpulan dan pengolahan data gempa, pemodelan dan karakterisasi sumber gempa serta analisis hazard gempa dan isoseismal. Analisis hazard gempa dilakukan dengan menggunakan teori probabilitas total dan pemodelan sumber gempa tiga dimensi. Penelitian ini menggunakan katalog BMKG tahun 1903 – 2010, kedalaman 0 – 300 km dan Mw ≥5 serta data PGA yang tercatat di jaringan BMKG. Hasil analisis hazard gempa menunjukkan nilai percepatan tanah maksimum (PGA) di batuan dasar Pulau Jawa, Bali dan NTB  bervariasi dari 0,05 g - 0,5 g. Secara umum, rentang nilai percepatan tersebut relatif hampir sama dengan Peta Gempa Indonesia 2010. Kurva hazard gempa di beberapa kota besar di Pulau Jawa menunjukkan gempa dalam sangat berpengaruh di Kota Serang, Jakarta dan Surabaya. Sumber gempa sesar dominan mempengaruhi hazard di Kota Bandung, Yogyakarta dan Semarang. Analisis isoseismal gempa Tasikmalaya 2 September 2009 dan 26 Juni 2010 menunjukkan daerah di selatan Pulau Jawa bagian barat mengalami guncangan yang cukup kuat sekitar VII – VIII MMI (0,25 g – 0,3 g) yang bersesuaian dengan peta hazard hasil combine source.Java, Bali, and NTB are earthquake-prone areas. One mitigation efforts to minimize the disaster impact is carried out through seismic hazard research. The purpose of this study is to analyze the earthquake hazard and isoseismal for the study area. The stages of the research include the literature study, collecting and processing seismic data, seismic sources modeling and characterization, earthquake hazard and isoseismal analysis. Seismic hazard analysis for the 10% probability of exceedance in 50 years was carried out using the total probability theory and three-dimensional earthquake source modeling. This study used the BMKG catalog from 1903 – 2010, 0-300 km depth, Mw ≥ 5 and PGA data recorded at the BMKG network. The results of this study show the PGA values varied from 0.05 to 0.5 g. In general, the acceleration ranges relatively close to the Indonesian Earthquake Map 2010. Seismic hazard curves in some big cities in Java showed that the deep earthquake was very influential in Serang, Jakarta, and Surabaya. The fault source dominant influence in Bandung, Yogyakarta, and Semarang. Isoseismal analysis of Tasikmalaya earthquakes on September 2, 2009, and June 26, 2010, shows the area in the southwestern part of Java experience strong shocks around VII - VIII MMI (0.25 - 0.3 g) which corresponds to the hazard maps result of combine source.
Implementation of Filter Picker Algorithm For Aftershock Identification of Lombok Earthquake 2018 A. Ardianto; Y.M. Husni; A. D. Nugraha; M. Muzli; Z. Zulfakriza; H. Afif; David P. Sahara; Sri Widiyantoro; Awali Priyono; Nanang T. Puspito; Pepen Supendi; A. Riyanto; Shengji Wei; B. S. Prabowo
Jurnal Geofisika Vol 17 No 1 (2019): Jurnal Geofisika
Publisher : Himpunan Ahli Geofisika Indonesia (HAGI)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (8338.28 KB) | DOI: 10.36435/jgf.v17i1.397

Abstract

The ability to identify earthquake events that are consistent, efficient and accurate is increasingly needed along with the increase in the amount of data analyzed. In this paper a filter picker algorithm is implemented to identify aftershock events and determination of arrival time automatically, especially for the P wave phase. Here modifications are made in determining the uncertainty of arrival time and there are additional criteria in determining the time of arrival used. The additional criteria are that in a certain time span, there are at least 5 stations determined by the time the filter picker arrives. This is done to minimize identification errors due to local noise and other practical reasons, namely the minimum number of stations to determine the location and other seismological analysis. To test the filter picker algorithm, aftershock data from the Lombok earthquake occurred on July 29 (M 6.4), August 5 (M 7), and August 19 (M 6.3 and M 6.9) 2018. The aftershock data were used for 30 days, from August 4, 2018 to September 4, 2018 using local seismic station in Lombok Island. The results of the filter picker algorithm were evaluated by comparing the number of earthquake events detected and the accuracy of determining the P wave arrival time automatically to the results of manually arriving time. In addition, a comparison of the results obtained from a broadband type seismometer with a short period is used to find out how much influence the type of tool has on its performance results. The results of the comparison with the manual arrival time show that more than 85 percent of the results of the automatic arrival time have a difference below 0.2 seconds. Therefore, it can be said that the filter picker algorithm is quite effective for identifying events and determining the arrival time of P waves. In this paper it is also shown that this algorithm can be used for broad band and short period seismometer sensor, even without the prior correction of instruments.
Geometrically Complex, Relatively Weak, and Subcritically Stressed Lembang Fault May Lead to a Magnitude 7.0 Earthquake Palgunadi, Kadek Hendrawan; Simanjuntak, Andrean Vesalius Hasiholan; Ry, Rexha Verdhora; Daryono, Mudrik Rahmawan; Widiyantoro, Sri; Warnana, Dwa Desa; Triahandini, Agnis; Syaifuddin, Firman; Ahmadiyah, Adhatus Solichah; Sirait, Anne Meylani Magdalena; Suryanto, Wiwit
Journal of Engineering and Technological Sciences Vol. 57 No. 1 (2025): February
Publisher : Directorate for Research and Community Services, Institut Teknologi Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/j.eng.technol.sci.2025.57.1.10

Abstract

The Lembang Fault is one of the major faults in the province of West Java, approximately 10 km north of its capital, Bandung, a city inhabited by more than 2 million people. The fault exhibits distinct geometrical characteristics in its 29 km length, transitioning from normal, strike-slip, to vertical faulting mechanisms. Two studies have evidence of a normal fault with a dip direction to the north and a thrust fault with a dip direction to the south. Despite the lack of significant recorded earthquakes, the Lembang Fault is active and poses a high seismic hazard to the surrounding region. Previous deformation studies estimate that the fault could produce earthquakes of magnitude 6.7 to 7.0, though these estimates do not account for the fault's unique geometry, which includes bends at both its eastern and western ends. This geometrical complexity can significantly affect slip distribution, potentially leading to over- or underestimating earthquake magnitude. In this study, we assess the earthquake potential of the Lembang Fault using 3D dynamic rupture simulations that incorporate the fault's geometrical complexity, 3D velocity structure, and plastic deformation. Our simulations indicate that the fault's complex geometry enhances rupture slip to the east while halting it to the west, resulting in rupture along 80% of the fault's total length. However, according to our model, a self-sustained runaway rupture scenario occurs only if the fault is characterized by relatively weak apparent strength, subcritical stress, and overpressurization. This worst-case scenario could result in a magnitude 7.0 earthquake, posing a significant threat to the densely populated nearby city. Therefore, our findings have crucial implications for seismic hazard assessment around the Lembang Fault.
Correction to: Investigation of Liquefaction in Balaroa, Petobo, and Jonooge (Central Sulawesi, Indonesia) Caused by the 2018 Palu Earthquake Sequence Triyono, Rahmat; Widiyantoro, Sri; Zulfakriza, Zulfakriza; Supendi, Pepen; Rahman, Aditya Setyo; Gunawan, Mohamad Taufik; Oktavia, Nur Hidayati; Rahmatullah, Fajri Syukur; Fadhilah, Fildzah Zaniati; Habibah, Nur Fani; Sativa, Oriza; Permana, Dadang; Wallansha, Robby; Octantyo, Ardian Yudhi; Persada, Yoga Dharma; Pranata, Bayu; Sujabar, Sujabar
Journal of Engineering and Technological Sciences Vol. 57 No. 2 (2025): Vol. 57 No. 2 (2025): April
Publisher : Directorate for Research and Community Services, Institut Teknologi Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/j.eng.technol.sci.2025.57.2.10

Abstract

Correction to:  Journal of Engineering and Technological Sciences https://doi.org/10.5614/j.eng.technol.sci.2024.56.3.1   The article titled "Investigation of Liquefaction in Balaroa, Petobo, and Jonooge (Central Sulawesi, Indonesia) Caused by the 2018 Palu Earthquake Sequence" , written by Rahmat Triyono, Sri Widiyantoro, Zulfakriza, Pepen Supendi, Aditya Setyo Rahman, Mohamad Taufik Gunawan, Nur Hidayati Oktavia, Fajri Syukur Rahmatullah,Fildzah Zaniati Fadhilah, Nur Fani Habibah, Oriza Sativa, Dadang Permana, Robby Wallansha, Ardian Yudhi Octantyo, Yoga Dharma Persada, Bayu Pranata, and Sujabar, was originally published electronically on thepublisher’s internet portal on 19 June 2024 . The corresponding author's affiliation at the time of publication was as follows: (1) Indonesian Agency of Meteorology, Climatology, and Geophysics, Jalan Angkasa 1 No. 2, Jakarta 10610, Indonesia; and (2) Global Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institut Teknologi Bandung, Jalan Ganesa No. 10, Bandung 40132, Indonesia.   Subsequently, the authors decided to update the corresponding author's affiliation to: (1) Geophysical Engineering Graduate Program, Faculty of Mining and Petroleum Engineering, Institut Teknologi Bandung, Jalan Ganesa No. 10, Bandung 40132, Indonesia; and (2) Indonesian Agency of Meteorology, Climatology, and Geophysics, Jalan Angkasa 1 No. 2, Jakarta 10610, Indonesia.   The original article can be found online at https://doi.org/10.5614/j.eng.technol.sci.2024.56.3.1