Claim Missing Document
Check
Articles

Found 38 Documents
Search

Sistem Kontrol Menghidupkan Lampu Otomatis Menggunakan Sensor Suara FC-04 Berbasis Arduino Uno Chairil, Slamet; Teuku Radillah; Satria, Budy
The Indonesian Journal of Computer Science Vol. 12 No. 1 (2023): The Indonesian Journal of Computer Science
Publisher : AI Society & STMIK Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33022/ijcs.v12i1.3121

Abstract

The problem that often occurs is forgetting to turn off the lights when you want to leave because you are in a hurry, as a result the lights stay on and there is a waste of electricity. This research was conducted with the aim of designing an Automatic Light Turning Control System Using the FC-04 Sound Sensor Based on Arduino Uno. When the Sound Sensor FC-04 detects the input of two hands clapping, the relay will give current to the light object so that it turns on automatically. The results of the tests that have been carried out are that the Arduino Uno Microcontroller works well for processing data. Testing the FC-04 Sound Sensor with a distance of 50-200 cm from the input in the form of the sound of applause causes the light to turn on as an output that the sensor functions to detect vibration frequency waves. In addition, the relay device also works well as a regulator of the electric power supply for the lamp so that the lamp can turn on or on. So that this tool can help humans turn off the lights so they no longer have to move closer to the lights and press existing buttons to be able to turn on or turn off the lights, but can be controlled through voice commands of applause.
Implementasi Sistem Pendukung Keputusan Menggunakan Algoritma MOORA untuk Pemilihan Jenis Bibit Cabai Unggul Al Akbar, Abdussalam; Yasin, Alimuddin; Alex Rizky Saputra; Sepriano; Siregar, Ratu Mutiara; Budy Satria; Elfitra
The Indonesian Journal of Computer Science Vol. 12 No. 6 (2023): The Indonesian Journal of Computer Science (IJCS)
Publisher : AI Society & STMIK Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33022/ijcs.v12i6.3464

Abstract

Cultivating chili plants is a business opportunity that has quite a large income. However, many farmers still use traditional concepts in determining which seeds to plant, such as trying out chili seeds without carrying out in-depth analysis or observation. A decision support system (DSS) is a system that is capable of providing decision recommendations using several criteria determined through method processes in the decision making system, namely ARAS, SAW, MOORA, AHP and others. The MOORA method is useful for separating the subjective part of an evaluation process into a decision weight criterion with several decision making attributes. And also the level of selectivity of this method is very good because it can determine objectives from conflicting criteria. Where the criteria can be profitable (benefit) or unprofitable (cost). Based on the results obtained after using the MOORA calculation method, there are 4 types of superior seed varieties that can be recommended for farmers, namely Taro Chili Seeds = 0.2875; Indrapura Chili Seeds = 0.2595 ; Lado Chili Seeds = 0.2490 ; Chili Seeds TM = 0.2154. By creating this decision support system, it is hoped that farmers will be able to use it as a reference in selecting superior chili seeds and be able to get maximum harvest results and increase commodity income for chili farmers.
PROTOTIPE KERAN AIR TANPA SENTUH DAN PENGUKUR SUHU TUBUH OTOMATIS BERBASIS MIKROKONTROLLER ARDUINO UNO Firma, Firma; Satria, Budy; Surya, Candra; Sepriano, Sepriano; Ashari, Muhammad Al; Iqbal, Muhammad
INTI Nusa Mandiri Vol. 19 No. 2 (2025): INTI Periode Februari 2025
Publisher : Lembaga Penelitian dan Pengabdian Pada Masyarakat

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33480/inti.v19i2.6417

Abstract

The global pandemic requires the development of technological solutions to minimize physical contact, especially in public facilities such as water taps, which can function as a medium for transmitting infectious diseases. This study aims to design and develop a prototype of an automatic water tap integrated with an Arduino Uno microcontroller-based body temperature meter. This system was created to support health protocol efforts when carrying out activities, increasing efficiency and reducing the risk of disease transmission. The research method includes problem identification, literature study, hardware and software component design, prototyping, and functionality testing. The test results obtained show that all components work according to their functions with a high level of accuracy, such as the HC-SR04 ultrasonic sensor, which is able to detect objects at a distance between the object and the sensor <12cm, then the Relay will be active and the Mini Water Pump will pump water automatically, and the Valve on the Solenoid Valve will open, and water will flow automatically through the water tap. The test results on the MLX-90614 temperature sensor also obtained an average difference of only 0.28 ° C compared to the thermometer gun as a comparison.
Segmentasi Pasien Rumah Sakit Berdasarkan Pola Kunjungan Menggunakan Algoritma K-Means Clustering untuk Optimasi Layanan Medis Nengsih, Yeyi Gusla; Samosir, Khairunnisa; Satria, Budy
Jurnal Pendidikan Sains dan Komputer Vol. 5 No. 01 (2025): Call for Papers February 2025
Publisher : Information Technology and Science (ITScience)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47709/jpsk.v5i01.5492

Abstract

Rumah sakit menghadapi tantangan dalam mengelola arus pasien yang beragam, baik dari segi waktu kunjungan, frekuensi kedatangan, hingga jenis layanan yang dibutuhkan. Penelitian ini bertujuan untuk melakukan segmentasi pasien berdasarkan pola kunjungan menggunakan algoritma K-Means, guna mengoptimalkan layanan medis dan meningkatkan efisiensi operasional rumah sakit. Data yang digunakan mencakup informasi Umur, Jenis Kelamin, Jumlah Kunjungan (per tahun), Durasi Kunjungan, Jenis Perawatan, Diagnosa Utama. Dalam penelitian ini penulis menggunakan K-Means Clustering. Metode K-Means Clustering adalah salah satu teknik dalam analisis data yang digunakan untuk mengelompokkan data ke dalam beberapa kelompok atau cluster berdasarkan kesamaan atau kedekatan atribut atau karakteristik data tersebut. Sedangkan untuk membantu pengolahan data agar lebih cepat dan efesien penulis menggunakan aplikasi Rapidminer. Hasil penelitian menunjukkan bahwa pasien dapat dikategorikan ke dalam 3 (Tiga) cluster, seperti penyakit kronis yaitu cluster_2 yang terdapat 4 variabel data, pasien dengan dengan kunjungan secara rutin yaitu cluster_1 yang terdapat 6 variabel data, dan pasien dengan kategori isidental yaitu cluster_2 terdapat 10 variabel data. Dari hasil segmentasi ini, rumah sakit dapat mengambil langkah strategis, seperti penjadwalan dokter yang lebih efektif, optimalisasi sumber daya medis, serta pengelolaan antrian yang lebih baik. Dengan pendekatan ini, rumah sakit dapat meningkatkan kepuasan pasien, mengurangi waktu tunggu, serta mengalokasikan tenaga medis dan fasilitas dengan lebih efisien.
DESIGN OF FIRE EXTINGUISHER ROBOT USING IOT WITH ANDROID APPLICATION CONTROL Budy Satria; Syarif Hidayatullah; Fitra Yuda; Leonard Tambunan; Siti Sahara Lubis; Irzon Meiditra
JITK (Jurnal Ilmu Pengetahuan dan Teknologi Komputer) Vol. 10 No. 3 (2025): JITK Issue February 2025
Publisher : LPPM Nusa Mandiri

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33480/jitk.v10i3.6135

Abstract

Fire is an unsupervised incidental disaster. This disaster has a detrimental impact on living and non-living things in the surrounding environment. This study was conducted to design an intelligent firefighting robot using Arduino Mega 2560 and Android-based IoT technology. This firefighting robot uses several Node MCU ESP8266 components as additional devices to connect to wifi. The L298N module regulates the speed and direction of the DC motor rotation, followed by the L9110 fan as hardware to extinguish the fire. The mobile robot prototype uses a DC motor as its driver. In addition, an Android application has been programmed to control the firefighting robot. This application has features that allow the robot to move in various directions and adjust the fan speed when extinguishing fires, all through an internet network connection. The study results showed that the application can be connected within a distance of 1-8 meters with good network quality. The test results showed that at a distance of 1-28 cm, the fan worked very well according to its function, and the Android application also worked optimally. In that range, the fan can extinguish the simulated fire source. The results of this study obtained a new approach to autonomous fire detection and extinguishing using IoT and robotic technology. In addition, it is able to integrate an Android-based IoT controller to enable remote control with real-time monitoring to overcome problems in previous research.
INTELLIGENT SYSTEM TO DETERMINE THE BEST LECTURER USING ADDITIVE RATIO ASSESSMENT ALGORITHM Wahyudi Wahyudi; Budy Satria; Lutfil Khairi
JITK (Jurnal Ilmu Pengetahuan dan Teknologi Komputer) Vol. 10 No. 3 (2025): JITK Issue February 2025
Publisher : LPPM Nusa Mandiri

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33480/jitk.v10i3.6281

Abstract

The quality of a lecturer's performance is one of the keys to institutional success that must be continuously improved. The performance assessment of lecturers in the Informatics study program of the Faculty of Information Technology, Andalas University faces obstacles in processing quantitative and qualitative data so that it is vulnerable to subjectivity including research productivity, teaching effectiveness, contributions to community service and additional activities. In addition, limitations in a systematic evaluation system result in unfairness and lack of transparency in the decision-making process. The research objective is to create a technology-based approach by applying the Additive Ratio Assessment method based on a Decision Support System. The ARAS method was chosen because it is able to determine effective final results based on multiple criteria that have been determined. The application of the ARAS method consists of 5 stages, namely determining the decision matrix, normalizing the decision matrix, weighting the normalization results, determining the optimum function value and ranking results. The results obtained are alternative data consisting of A1,A2,A3,A4,A5,A6,A7,A8,A9,A10,A11 and 8 criteria and weighting, namely the last education (10%), functional position (15%), certification (20%), number of publications (15%), author order (15%), publication index quality (10%), research grants (10%) and PkM (5%). The ranking results with the highest value in order 1-5 are 0.113875, 0.109785, 0.104235, 0.099005, 0.094715. The final conclusion of this research is that the ARAS method is able to prove the best lecturer assessment to be more efficient, transparent and subjective to be applied in the Andalas University Informatics study program.
Optimalisasi Penilaian Kinerja Pegawai Baznas Kota Padang Melalui Aplikasi SPK Metode TOPSIS Berbasis Web Budy Satria; Wahyudi, Wahyudi; Rahman, Arifan; Hadi Wijaya, Anggi; Dinilhak, Afdhal; Nurfiah, Nurfiah; Khairi, Luthfil; Dwi Asti, Ajeng; Eka Putri, Rahmi; Derisma, Derisma; Sakinah, Putri; Zamora, Sasya; Azizah, Tiara
JDISTIRA - Jurnal Pengabdian Inovasi dan Teknologi Kepada Masyarakat Vol. 5 No. 2 (2025)
Publisher : Yayasan Rahmatan Fidunya Wal Akhirah

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.58794/jdt.v5i2.1534

Abstract

Baznas Kota Padang memiliki peran strategis dalam pengelolaan zakat, infak, dan sedekah yang menuntut kinerja pegawai yang profesional dan akuntabel. Namun, sistem penilaian kinerja yang digunakan saat ini masih manual belum terintegrasi secara digital. Kegiatan PkM ini bertujuan untuk membuat aplikasi penilaian kinerja pegawai berbasis web. Aplikasi dibuat menggunakan model Sistem Pendukung Keputusan metode TOPSIS dengan beberapa tahapan yaitu Mengumpulkan data alternatif, data kriteria yang diberi nilai bobot, data sub kriteria, data penilaian seluruh alternatif, data perhitungan dan hasil akhir. Kegiatan ini dilakukan dalam beberapa tahap: pra-persiapan, persiapan, pelaksanaan, dan evaluasi.  Hasil kegiatan yang diperoleh adalah Mitra PkM menjadi lebih mudah melakukan penilaian dan aplikasi mendukung pencapaian target kinerja lembaga dengan adanya aplikasi berbasis web didukung dengan hasil evaluasi melalui pengisian kuesioner bahwa responden memberikan nilai 77,8%. Kesimpulan akhir adalah diharapkan program PkM ini dapat terus berkelanjutan, sehingga Baznas Kota Padang bisa bertransformasi menuju evaluasi kinerja pegawai yang lebih terstruktur dengan dukungan aplikasi.
Comparative Analysis of Weighted-KNN, Random Forest, and Support Vector Machine Models for Beef and Pork Image Classification Using Machine Learning Satria, Budy; Afrianto, Nurdi; Ningsih, Lidya; Sakinah, Putri; Sidauruk, Acihmah; Mayola, Liga
JOIV : International Journal on Informatics Visualization Vol 9, No 4 (2025)
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62527/joiv.9.4.3736

Abstract

The actual problem that occurs in the sale of meat by some conventional market traders is mixing beef with pork because of the high selling price. The difference between pork and beef lies in the color and texture of the meat. However, many people do not understand this difference. This study aims to provide a solution to distinguish the two types of beef through a classification process by obtaining the best accuracy using the W-KNN, RF, and SVM models based on machine learning. This study compares the model's performance based on the number of datasets, comprising 400 original images (200 beef and 200 pork images), using a 80:20 ratio for training and test data. The extraction process uses two algorithms: HSV (Hue, Saturation, Value) and RGB (Red, Green, Blue). The model evaluation uses a confusion matrix that includes accuracy, Precision, Recall, and F1-score. Based on the results of the model testing, it was found that the random forest algorithm gave the best overall results, with the highest accuracy of 98.75%, Precision of 97%, F1-score of 98%, and recall of 99% on the number of decision trees of 400. This shows the stability and generalization of the superior model. The random forest algorithm is the most effective for classifying beef and pork data with minimal errors. Implications for further research include using a deep learning approach, especially for image processing, to detect differences in each meat characteristic and increase accuracy.