p-Index From 2021 - 2026
1.907
P-Index
This Author published in this journals
All Journal International Journal of Electrical and Computer Engineering IJCCS (Indonesian Journal of Computing and Cybernetics Systems) Jurnal Ilmu Komputer dan Informasi Lontar Komputer: Jurnal Ilmiah Teknologi Informasi Jurnal Ilmu Komputer Jurnal Teknik ITS Majalah Kedokteran Bandung IPTEK The Journal for Technology and Science CAUCHY: Jurnal Matematika Murni dan Aplikasi Jurnal Buana Informatika TELKOMNIKA (Telecommunication Computing Electronics and Control) JUTI: Jurnal Ilmiah Teknologi Informasi Jurnal Ilmiah Kursor Jurnal technoscientia Jurnal Teknologi Informasi dan Ilmu Komputer Journal of ICT Research and Applications REKAYASA JPM17: Jurnal Pengabdian Masyarakat POROS TEKNIK Annual Research Seminar Register: Jurnal Ilmiah Teknologi Sistem Informasi EMITTER International Journal of Engineering Technology Jurnal Inspiration Dental Journal (Majalah Kedokteran Gigi) Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) JITTER (Jurnal Ilmiah Teknologi Informasi Terapan) Jurnal ULTIMATICS Journal of Computer Science and Informatics Engineering (J-Cosine) Systemic: Information System and Informatics Journal Specta Journal of Technology EPI International Journal of Engineering ILKOMNIKA: Journal of Computer Science and Applied Informatics Indonesian Journal of Electrical Engineering and Computer Science JURNAL TEKNOLOGI TECHNOSCIENTIA Makara Journal of Technology Sewagati Nusantara Journal of Computers and its Applications Jurnal INFOTEL
Claim Missing Document
Check
Articles

Sistem Informasi Absensi Haul Berbasis Web di Pondok Pesantren Muhyiddin Surabaya Jannah, Erliyah Nurul; Arifin, Agus Zainal
Register: Jurnal Ilmiah Teknologi Sistem Informasi Vol 1, No 1 (2015): Januari-Juni
Publisher : Prodi Sistem Informasi - Universitas Pesantren Tinggi Darul Ulum

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (946.067 KB) | DOI: 10.26594/register.v1i1.405

Abstract

Teknologi informasi saat ini telah menjadi kebutuhan bagi hampir semua instansi, baik pemerintah maupun swasta. Tak terkecuali pondok pesantren, khususnya Pondok Pesantren Muhyiddin Surabaya. Berbagai permasalahan di pondok pesantren membutuhkan bantuan teknologi informasi dalam penyelesaiannya. Salah satunya adalah permasalahan pencatatan kehadiran peserta dalam suatu acara tertentu seperti acara Haul. Haul merupakan acara tahunan yang bertujuan untuk memperingati hari lahirnya Nabi Muhammad SAW. Acara Haul di PP. Muhyiddin mendatangkan lebih dari seribu peserta yang merupakan penghafal Quran. Panitia Haul harus mengabsen peserta satu persatu serta menempatkannya ke majelis-majelis berdasarkan urutan kedatangan dan kota asal. Sistem informasi absensi yang ada masih berbasis desktop dan hanya mampu digunakan untuk mengabsen peserta saja. Sistem tersebut belum mampu melakukan pembagian majelis peserta secara otomatis. Padahal proses pembagian majelis inilah yang menyebabkan proses absensi memakan waktu lama. Oleh sebab itu, dibuatlah sebuah Sistem Informasi Absensi Haul yang berbasis web. Sistem ini diharapkan mampu untuk membuat proses absensi pada acara Haul menjadi lebih efisien. Dari hasil pengujian sistem yang telah dilakukan, dalam satu menit sistem dapat digunakan untuk mengabsen sepuluh peserta, membagi peserta tersebut ke majelis-majelis, dan mencetak kartu peserta Haul.
Membatasi k-Ketenggaan Simpul dalam Pembangkitan Random Graph Metode Erdos Royi untuk Meningkatkan Kinerja Komputasi Abidin, Zainal; Arifin, Agus Zainal
CAUCHY Vol 1, No 2 (2010): CAUCHY
Publisher : Mathematics Department, Maulana Malik Ibrahim State Islamic University of Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (425.536 KB) | DOI: 10.18860/ca.v1i2.1706

Abstract

Edges generation by random graph erdos-royi methods was needed high computation, it’s caused low performance. In fact, edge generation was used frequently with many nodes. this paper is described a node restriction by k-nearest neighbour on edge generation of random graph erdos royi method. Result of noderestriction by k-nearest neighbour can be reduced computation time.
Segmentasi Citra Ikan Tuna Dengan Otomatisasi Parameter Dbscan Menggunakan Jumlah Titik Puncak Pada Histogram Saputra, Wanvy Arifha; Chandranegara, Didih Rizki; Arifin, Agus Zainal
POROS TEKNIK Vol. 10 No. 1 (2018)
Publisher : P3M Politeknik Negeri Banjarmasin

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31961/porosteknik.v10i1.658

Abstract

Segmentasi pada citra ikan tuna menggunakan Density-Based Spatial Clustering of Application (DBSCAN) membutuhkan dua parameter utama, yaitu Eps dan MinPts. Parameter tersebut dapat melakukan segmentasi citra tanpa mengetahui jumlah kluster. Setiap citra memiliki nilai parameter yang berbeda untuk mendapatkan hasil segmentasi yang terbaik. Input nilai parameter dengan metode manual memiliki kelemahan dalam mendapatkan nilai yang optimal dan secara subjektif dalam menentukan nilai parameter tersebut. Kelemahan dalam mendapatkan nilai parameter yang optimal dapat menyebabkan nilai parameter yang salah dan akan berpengaruh pada hasil segmentasi dari setiap citra. Kami mengajukan metode baru yaitu segmentasi citra ikan tuna dengan otomatisasi parameter DBSCAN menggunakan jumlah titik puncak pada histogram, sehingga mendapatkan nilai parameter yang optimal untuk segmentasi dari setiap citra. Untuk mendukung hal tersebut, kami menggunakan Eps Spatial, Eps Color dan MinPts di algoritma DBSCAN. Parameter tersebut mengambil nilai dari jumlah titik puncak pada histogram dalam ruang warna yang berbeda. Hasil dari metode ini dapat melakukan segmentasi citra ikan tuna dibuktikan dengan 30 citra yang telah digunakan dan mendapatkan akurasi diatas 90&. Jadi ini dapat melakukan segmentasi tanpa mengetahui nilai parameter tersebut.
Performance Analysis of Specification Computer and Mobile with Implementation Tawaf Virtual Reality using A* Algorithm and RVO System Zikky, Moh.; Arifin, M. Jainal; Fathoni, Kholid; Arifin, Agus Zainal
EMITTER International Journal of Engineering Technology Vol 7, No 1 (2019)
Publisher : Politeknik Elektronika Negeri Surabaya (PENS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (587.902 KB) | DOI: 10.24003/emitter.v7i1.321

Abstract

High-Performance Computer (HPC) is computer systems that are built to be able to solve computational loads. HPC can provide a high-performance technology and short the computing processes timing. This technology was often used in large-scale industries and several activities that require high-level computing, such as rendering virtual reality technology. In this research, we provide Tawaf’s Virtual Reality with 1000 of Pilgrims and realistic surroundings of Masjidil-Haram as the interactive and immersive simulation technology by imitating them with 3D models. Thus, the main purpose of this study is to calculate and to understand the processing time of its Virtual Reality with the implementation of tawaf activities using various platforms; such as computer and Android smartphone. The results showed that the outer-line or outer rotation of Kaa’bah mostly consumes minimum times although he must pass the longer distance than the closer one.  It happened because the agent with the closer area to Kaabah is facing the crowded peoples. It means an obstacle has the more impact than the distances in this case.
Pengembangan Metode Klasterisasi Data Berbasis Hybrid Improved Artificial Bee Colony (IABC) dan K – Harmonic Means Musa, Saiful Bahri; Humaira, Fitrah Maharani; Widiartha, I Made; Herumurti, Darlis; Arifin, Agus Zainal; Fiqar, Tegar Palyus
Specta Journal Vol 2 No 3 (2018): SPECTA Journal of Technology
Publisher : Specta Journal

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (466.517 KB) | DOI: 10.0610/specta.v2i3.3

Abstract

One of data grouping process method is k-harmonic clustering method (KHM) which has a relatively short and simple process. However, it has a weakness at cluster center point. Randomly formed cluster center point causes difficulty to converge solutions. One way to solve the problem at the cluster center point requires a method which has a global solution for KHM. The method is Improved artificial bee colony (IABC), improvement of artificial bee colony (ABC) method based on behavior patterns of honey bee colony in food searching process. Advantage of the IABC method is able to have more optimum global solution. This research proposes a new method of clustering using improved artificial bee colony and K-Harmonic means (IABC-KHM) to optimize the center point in clusters that lead to global solution. In this study, the IABC is functioned for finding the most optimum cluster center point for the data clustering process using KHM. Furthermore, the performance test of the IABC-KHM clustering method is compared with ABC and ABC-KHM methods on three different datasets. The result of mean value of best function of IABC-KHM method of Iris dataset is 152,87, Contraceptive Method Choice dataset is 918,54, and Wine dataset is 31,01. Moreover, the result of the average value of the best F-Measure method IABC-KHM Iris dataset is 0.90, the Contraceptive Method Choice dataset is 0.41, the Wine dataset is 0.95. To conclude, IABC-KHM method has successfully optimized the position of cluster center point that directs the cluster result which has global solution.
Deteksi Bot Spammer Twitter Berbasis Time Interval Entropy dan Global Vectors for Word Representations Tweet’s Hashtag Priyatno, Arif Mudi; Muttaqi, Muhammad Mirza; Syuhada, Fahmi; Arifin, Agus Zainal
Register: Jurnal Ilmiah Teknologi Sistem Informasi Vol 5, No 1 (2019): January-June
Publisher : Information Systems - Universitas Pesantren Tinggi Darul Ulum

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1346.279 KB) | DOI: 10.26594/register.v5i1.1382

Abstract

Bot spammer merupakan penyalahgunaan user dalam menggunakan Twitter untuk menyebarkan pesan spam sesuai dengan keinginan user. Tujuan spam mencapai trending topik yang ingin dibuatnya. Penelitian ini mengusulkan deteksi bot spammer pada Twitter berbasis Time Interval Entropy dan global vectors for word representations (Glove). Time Interval Entropy digunakan untuk mengklasifikasi akun bot berdasarkan deret waktu pembuatan tweet. Glove digunakan untuk melihat co-occurrence kata tweet yang disertai Hashtag untuk proses klasifikasi menggunakan Convolutional Neural Network (CNN). Penelitian ini menggunakan data API Twitter dari 18 akun bot dan 14 akun legitimasi dengan 1.000 tweet per akunnya. Hasil terbaik recall, precision, dan f-measure yang didapatkan yaitu 100%; 100%, dan 100%. Hal ini membuktikan bahwa Glove dan Time Interval Entropy sukses mendeteksi bot spammer dengan sangat baik. Hashtag memiliki pengaruh untuk meningkatkan deteksi bot spammer.  Spam spammers are users' misuse of using Twitter to spread spam messages in accordance with user wishes. The purpose of spam is to reach the required trending topic. This study proposes detection of bot spammers on Twitter based on Time Interval Entropy and global vectors for word representations (Glove). Time Interval Entropy is used to classify bot accounts based on the tweet's time series, while glove views the co-occurrence of tweet words with Hashtags for classification processes using the Convolutional Neural Network (CNN). This study uses Twitter API data from 18 bot accounts and 14 legitimacy accounts with 1000 tweets per account. The best results of recall, precision, and f-measure were 100%respectively. This proves that Glove and Time Interval Entropy successfully detects spams, with Hash tags able to increase the detection of bot spammers.
Query Expansion menggunakan Word Embedding dan Pseudo Relevance Feedback Tanuwijaya, Evan; Adam, Safri; Anggris, Mohammad Fatoni; Arifin, Agus Zainal
Register: Jurnal Ilmiah Teknologi Sistem Informasi Vol 5, No 1 (2019): January-June
Publisher : Information Systems - Universitas Pesantren Tinggi Darul Ulum

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1248.276 KB) | DOI: 10.26594/register.v5i1.1385

Abstract

Kata kunci merupakan hal terpenting dalam mencari sebuah informasi. Penggunaan kata kunci yang tepat menghasilkan informasi yang relevan. Saat penggunaannya sebagai query, pengguna menggunakan bahasa yang alami, sehingga terdapat kata di luar dokumen jawaban yang telah disiapkan oleh sistem. Sistem tidak dapat memproses bahasa alami secara langsung yang dimasukkan oleh pengguna, sehingga diperlukan proses untuk mengolah kata-kata tersebut dengan mengekspansi setiap kata yang dimasukkan pengguna yang dikenal dengan Query Expansion (QE). Metode QE pada penelitian ini menggunakan Word Embedding karena hasil dari Word Embedding dapat memberikan kata-kata yang sering muncul bersama dengan kata-kata dalam query. Hasil dari word embedding dipakai sebagai masukan pada pseudo relevance feedback untuk diperkaya berdasarkan dokumen jawaban yang telah ada. Metode QE diterapkan dan diuji coba pada aplikasi chatbot. Hasil dari uji coba metode QE yang diterapkan pada chatbot didapatkan nilai recall, precision, dan F-measure masing-masing 100%; 70% dan 82,35 %. Hasil tersebut meningkat 1,49% daripada chatbot tanpa menggunakan QE yang pernah dilakukan sebelumnya yang hanya meraih akurasi sebesar 68,51%. Berdasarkan hasil pengukuran tersebut, QE menggunakan word embedding dan pseudo relevance feedback pada chatbot dapat mengatasi query masukan dari pengguna yang ambigu dan alami, sehingga dapat memberikan jawaban yang relevan kepada pengguna.  Keywords are the most important words and phrases used to obtain relevant information on content. Although users make use of natural languages, keywords are processed as queries by the system due to its inability to process. The language directly entered by the user is known as query expansion (QE). The proposed QE in this research uses word embedding owing to its ability to provide words that often appear along with those in the query. The results are used as inputs to the pseudo relevance feedback to be enriched based on the existing documents. This method is also applied to the chatbot application and precision, and F-measure values of the results obtained were 100%, 70%, 82.35% respectively. The results are 1.49% better than chatbot without using QE with 68.51% accuracy. Based on the results of these measurements, QE using word embedding and pseudo which gave relevance feedback in chatbots can resolve ambiguous and natural user?s input queries thereby enabling the system retrieve relevant answers.
Ambiguitas Machine Translation pada Cross Language Chatbot Bea Cukai Al Haromainy, Muhammad Muharrom; Setyawan, Dimas Ari; Waluya, Onny Kartika; Arifin, Agus Zainal
Register: Jurnal Ilmiah Teknologi Sistem Informasi Vol 5, No 1 (2019): January-June
Publisher : Information Systems - Universitas Pesantren Tinggi Darul Ulum

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1284.702 KB) | DOI: 10.26594/register.v5i1.1387

Abstract

Sistem Information Retrieval (IR) maupun chatbot semakin banyak dikembangkan. Salah satu bagian yang banyak diteliti adalah cross language. Masalah pada pengembangan cross language yaitu terjadinya kesalahan pada hasil terjemahan mesin translasi yang memberikan arti tidak sesuai dengan bahasa natural, sehingga pengguna tidak mendapatkan jawaban yang semestinya, bahkan tidak jarang pula pengguna tidak menemukan jawaban. Penelitian ini mengusulkan skema baru mesin translasi yang bertujuan meningkatkan performa dalam masalah ambiguitas. Mesin translasi bekerja dengan cek kebenaran kata kunci, kemudian melakukan Part-of-Speech (POS) Tagging pada kata benda (noun). Kemudian, setiap kata benda yang terdeteksi akan dicari sinonimnya. Lalu, sinonim yang didapatkan akan ditambahkan dan menjadi alternatif kueri baru. Kueri yang mempunyai nilai confident tertinggi diasumsikan sebagai kueri yang paling sesuai. Pada hasil yang didapatkan setelah dilakukan uji coba, melalui penambahan metode yang kami usulkan pada machine translation, dapat meningkatkan akurasi chatbot dibandingkan tanpa menggunakan skema yang diusulkan. Hasil akurasi bertambah 5%, dari yang semula 73% menjadi 77%.  Information retrieval and chatbot systems are increasingly being developed with its language part mostly studied. However, the problem associated with its development is the occurrence of errors in the translation machine resulting in inaccurate answers not in accordance with the natural language, thereby providing users with wrong answers. This study proposes a new translation machine scheme that aims to improve performance while translating ambiguous terms. Translation machines functions by checking the correctness of keywords, and carrying out Part-of-Speech (POS) Tagging on nouns (noun). The synonyms of any detected noun are searched for and obtained added to become alternative new queries. Those with the highest confident value are assumed to be the most appropriate. The results obtained after testing, through the addition of the method proposed in machine translation, can improve the accuracy of the chatbot compared to not using the proposed scheme. The results of the accuracy increased from the original 73% to 77%.
Pengembangan Metode Klasterisasi Data Berbasis Hybrid Improved Artificial Bee Colony (IABC) dan K – Harmonic Means Fiqar, Tegar Palyus; Musa, Saiful Bahri; Humaira, Fitrah Maharani; Widiartha, I Made; Herumurti, Darlis; Arifin, Agus Zainal
SPECTA Journal of Technology Vol 2 No 3 (2018): SPECTA Journal of Technology
Publisher : LPPM ITK

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (466.517 KB) | DOI: 10.35718/specta.v2i3.3

Abstract

One of data grouping process method is k-harmonic clustering method (KHM) which has a relatively short and simple process. However, it has a weakness at cluster center point. Randomly formed cluster center point causes difficulty to converge solutions. One way to solve the problem at the cluster center point requires a method which has a global solution for KHM. The method is Improved artificial bee colony (IABC), improvement of artificial bee colony (ABC) method based on behavior patterns of honey bee colony in food searching process. Advantage of the IABC method is able to have more optimum global solution. This research proposes a new method of clustering using improved artificial bee colony and K-Harmonic means (IABC-KHM) to optimize the center point in clusters that lead to global solution. In this study, the IABC is functioned for finding the most optimum cluster center point for the data clustering process using KHM. Furthermore, the performance test of the IABC-KHM clustering method is compared with ABC and ABC-KHM methods on three different datasets. The result of mean value of best function of IABC-KHM method of Iris dataset is 152,87, Contraceptive Method Choice dataset is 918,54, and Wine dataset is 31,01. Moreover, the result of the average value of the best F-Measure method IABC-KHM Iris dataset is 0.90, the Contraceptive Method Choice dataset is 0.41, the Wine dataset is 0.95. To conclude, IABC-KHM method has successfully optimized the position of cluster center point that directs the cluster result which has global solution.
Klasifikasi Berita Berbahasa Indonesia Mengggunakan Seleksi Fitur Dua Tahap Dan Naïve Bayes Fauzi, M Ali; Gosario, Sony; Arifin, Agus Zainal
Systemic: Information System and Informatics Journal Vol 3 No 2 (2017): Desember
Publisher : Program Studi Sistem Informasi Fakultas Sains dan Teknologi, UIN Sunan Ampel Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29080/systemic.v3i2.240

Abstract

Jumlah dokumen digital telah meningkat secara pesat, sehingga klasifikasi dokumen secara otomatis menjadi sangat penting. Pemilihan fitur diperlukan dalam klasifikasi dokumen otomatis. Salah satu metode seleksi fitur yang terbukti handal adalah Maximal Marginal Relevance for Feature Selection (MMR-FS), namun metode ini memiliki kompleksitas yang tinggi. Dalam penelitian ini, diusulkan sebuah metode baru dalam pemilihan fitur untuk klasifikasi dokumen. Metode yang diusulkan terdiri dari dua tahap, yang pertama adalah Information Gain dan yang kedua adalah MMR-FS . Pada proses klasifikasinya digunakan metode Naïve Bayes. Dalam percobaan yang dilakukan, metode yang diusulkan bisa mencapai akurasi 86%. Metode baru ini dapat menurunkan kompleksitas MMR-FS namun tetap mempertahankan keakuratannya.
Co-Authors - Azhari AA Sudharmawan, AA Adenuar Purnomo Adhi Nurilham Adi Guna, I Gusti Agung Socrates Afrizal Laksita Akbar Ahmad Afiif Naufal Ahmad Reza Musthafa, Ahmad Reza Ahmad Syauqi Aida Muflichah Aidila Fitri Fitri Heddyanna Akira Asano Akira Taguchi Akwila Feliciano Alhaji Sheku Sankoh, Alhaji Sheku Alif Akbar Fitrawan, Alif Akbar Alifia Puspaningrum Alqis Rausanfita Amelia Devi Putri Ariyanto Aminul Wahib Aminul Wahib Aminul Wahib Ana Tsalitsatun Ni'mah Andi Baso Kaswar Andi Baso Kaswar Anindhita Sigit Nugroho Anindita Sigit Nugroho Anny Yunairti Anny Yuniarti Anto Satriyo Nugroho Arif Fadllullah Arif Mudi Priyatno Arifin, M. Jainal Arifzan Razak Arini Rosyadi Arrie Kurniawardhani Arya Widyadhana Arya Yudhi Wijaya Bagus Satria Wiguna Bagus Setya Rintyarna Baskoro Nugroho Bilqis Amaliah Chandranegara, Didih Rizki Chastine Fatichah Christian Sri kusuma Aditya, Christian Sri kusuma Cinthia Vairra Hudiyanti Cornelius Bagus Purnama Putra Daniel Sugianto Daniel Swanjaya Darlis Herumurti Dasrit Debora Kamudi Desepta Isna Ulumi Desmin Tuwohingide Dhian Kartika Diana Purwitasari Didih Rizki Chandranegara Dika Rizky Yunianto Dimas Fanny Hebrasianto Permadi Dini Adni Navastara, Dini Adni Dinial Utami Nurul Qomariah Dwi Ari Suryaningrum Dyah S. Rahayu Eha Renwi Astuti Endang Juliastuti Erliyah Nurul Jannah, Erliyah Nurul Ery Permana Yudha Eva Firdayanti Bisono Evan Tanuwijaya Evelyn Sierra Fahmi Syuhada Fahmi Syuhada Fandy Kuncoro Adianto Fathoni, Kholid Fiqey Indriati Eka Sari Gosario, Sony Gulpi Qorik Oktagalu Pratamasunu Gus Nanang Syaifuddiin Handayani Tjandrasa Hanif Affandi Hartanto Hudan Studiawan Humaira, Fitrah Maharani Humaira, Fitrah Maharani I Guna Adi Socrates I Gusti Agung Socrates Adi Guna I Made Widiartha I Putu Gede Hendra Suputra Indra Lukmana Irna Dwi Anggraeni, Irna Dwi Ismail Eko Prayitno Rozi Januar Adi Putra Kevin Christian Hadinata Khadijah F. Hayati Khairiyyah Nur Aisyah Khairiyyah Nur Aisyah, Khairiyyah Nur Khalid Khalid Khoirul Umam Kholid Fathoni Lafnidita Farosanti Laili Cahyani Lutfiani Ratna Dewi Luthfi Atikah M. Ali Fauzi M. Jainal Arifin Mamluatul Hani’ah Maulana, Hendra Maulana, Hendra Mika Parwita Moch Zawaruddin Abdullah Moh. Zikky Moh. Zikky, Moh. Mohammad Fatoni Anggris, Mohammad Fatoni Mohammad Sonhaji Akbar Muhamad Nasir Muhammad Bahrul Subkhi Muhammad Fikri Sunandar Muhammad Imron Rosadi Muhammad Imron Rosadi Muhammad Machmud Muhammad Mirza Muttaqi Muhammad Muharrom Al Haromainy Munjiah Nur Saadah Muttaqi, Muhammad Mirza Nahya Nur Nanang Fakhrur Rozi Nanik Suciati Nina Kadaritna Nova Hadi Lestriandoko Novi Nur Putriwijaya Novrindah Alvi Hasanah Nur, Nahya Nuraisa Novia Hidayati Nursanti Novi Arisa Nursuci Putri Husain Ozzy Secio Riza Pangestu Widodo, Pangestu Pasnur Pasnur Pasnur Pasnur Puji Budi Setia Asih Putri Damayanti Putri Nur Rahayu Putu Praba Santika Rangga Kusuma Dinata Rarasmaya Indraswari Ratri Enggar Pawening Renest Danardono Resti Ludviani Rigga Widar Atmagi Riyanarto Sarno Riza, Ozzy Secio Rizka Sholikah Rizka Wakhidatus Sholikah Rizqa Raaiqa Bintana Rizqi Okta Ekoputris Rosyadi, Ahmad Wahyu Ryfial Azhar, Ryfial Safhira Maharani Safri Adam Saiful Bahri Musa Salim Bin Usman Saputra, Wahyu Syaifullah Jauharis Satrio Verdianto Satrio Verdianto Setyawan, Dimas Ari Sherly Rosa Anggraeni Siprianus Septian Manek Sonny Christiano Gosaria Sugiyanto, Sugiyanto Suprijanto Suprijanto Suwanto Afiadi Syadza Anggraini Syuhada, Fahmi Takashi Nakamoto Tegar Palyus Fiqar Tesa Eranti Putri Tio Darmawan Umi Salamah Undang Rosidin Verdianto, Satrio Waluya, Onny Kartika Wanvy Arifha Saputra Wardhana, Septiyawan R. Wawan Gunawan Wawan Gunawan Wawan Gunawan Wawan Gunawan Wijayanti Nurul Khotimah Wiwik Dyah Septiana Kurniati Yudhi Diputra Yufis Azhar Yulia Niza Yunianto, Dika R. Zainal Abidin Zakiya Azizah Cahyaningtyas