Claim Missing Document
Check
Articles

Found 3 Documents
Search
Journal : The Indonesian Journal of Computer Science

Autism Detection based on Deep Learning Walujo, Ivana Yudith; Iwan Syarif; Arna Fariza
The Indonesian Journal of Computer Science Vol. 13 No. 6 (2024): The Indonesian Journal of Computer Science (IJCS)
Publisher : AI Society & STMIK Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33022/ijcs.v13i6.4552

Abstract

Autism Spectrum Disorder (ASD) is a complex developmental condition that affects communication and behavior, with prevalence rates increasing significantly in recent years [1]. According to recent research, early detection remains a challenge but is essential for effective intervention. This study leverages deep learning, specifically the ResNet 34 model, to analyze facial features in children, facilitating early detection of ASD. Using cross-validation to ensure robust model performance, the approach achieved an accuracy rate of 87% with ResNet 34 and 86% with cross-validation. This study contributes to the field by offering a non-invasive diagnostic aid that can help healthcare providers recognize ASD traits through facial analysis. The findings highlight the potential of deep learning in advancing ASD detection, with future work aimed at expanding the dataset and improving model precision.
Klasifikasi Tinggi Badan Menggunakan Metode Mask R-CNN Permana Sanusi, Amadea; Fariza, Arna; Setiawardhana
The Indonesian Journal of Computer Science Vol. 12 No. 4 (2023): The Indonesian Journal of Computer Science (IJCS)
Publisher : AI Society & STMIK Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33022/ijcs.v12i4.3348

Abstract

Tinggi badan adalah parameter penting saat memasuki sebuah wahana. Penggunaan alat keselamatan saat bermain wahana permainan tidak akan maksimal jika wisatawan tidak memiliki tinggi badan yang sesuai dengan kriteria untuk memasuki wahana tersebut. Dalam penerapannya, seleksi wisatawan yang diperbolehkan masuk ke dalam wahana permainan masih menggunakan pengukuran tinggi badan secara manual. Penelitian ini bertujuan untuk mengurangi resiko terjadinya kecelakaan pada kendaraan dengan mengklasifikasikan dan mengimplementasikan sistem otomasi menggunakan pendekatan deep learning. Penggunaan deep learning yang berkembang saat ini dapat digunakan untuk mengklasifikasikan pengunjung. Penelitian ini mengusulkan proses klasifikasi tinggi badan menggunakan metode Mask R-CNN yang dapat digunakan untuk melakukan klasifikasi lebih dari satu orang, sehingga mempercepat antrean wisatawan pada wahana permainan. Hasil pengujian menunjukkan bahwa model Mask R-CNN yang dibangun berhasil mengklasifikasikan objek dengan memberikan bounding box, masking, dan label yang sesuai dengan objek. Membangun model Mask R-CNN sangat dipengaruhi oleh variatif gambar pada dataset dan proses anotasi gambar di dalam dataset. Evaluasi model menunjukkan hasil perhitungan mAP yang didapatkan sebesar 71%. Penelitian ini telah memenuhi tujuan utama dalam penelitian karena model Mask R-CNN berhasil melakukan klasifikasi yang sesuai.
Classification of flood disaster level news articles using Machine Learning Rahmad Santosa; Arna Fariza; Firman Arifin
The Indonesian Journal of Computer Science Vol. 13 No. 1 (2024): The Indonesian Journal of Computer Science (IJCS)
Publisher : AI Society & STMIK Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33022/ijcs.v13i1.3646

Abstract

Floods have a significant socio-economic impact on Indonesian society. Much of this information is sourced from online news articles and social media. This research investigates whether the Support Vector Machine (SVM) method can be used for flood disaster level classification (low, medium, and high). Our methodology involves preparing data extracted from textual news articles on the National Disaster Management Agency (BNPB) website on the topic of flooding. We then labeled the data according to Regulation No. 02/2012 on general guidelines for disaster assessment and used the Support Vector Machine (SVM) method. Training and testing were conducted using different datasets, followed by accuracy and error evaluation. In addition, we considered the performance comparison of SVM with other classification methods, including Decision Tree, Naive Bayes, Adaboost, Random Forest, and Xgboost. The experimental results show that SVM still does not get good accuracy results for flood disaster level classification. The SVM accuracy level result of (52%) is still low compared to Random Forest (78%), and Xgboost (68%). Further research is expected to increase the accuracy of SVM for flood level classification.
Co-Authors Achmad Basuki Aditama, Darmawan Afifah, Izza Nur Afrida Helen Afrida Helen Agus Prayudi Agus Wibowo Agus Wibowo Ahmad Walid Hujairi Ahsan, Ahmad Syauqi Al Falah, Adam Ghazy Alfaqih, Wildan Maulana Akbar Ali Ridho Barakbah Amadea Permana Sanusi Andhik Ampuh Yunanto Andy Soeseno Annisa Rasyid Ardinur Mahyuzar Ardiyanto Happy Susilo Arif Basofi Arif Basofi Arif Basofi Asmara, Rengga Aziz, Adam Shidqul Basofi, Arif Basofi, Arif Bima Sena Bayu Dewantara Dadet Pramadihanto Dadet Pramadihanto Damastuti, Fardani Annisa Darmawan Aditama Desy Intan Permatasari, Desy Intan Deyana Kusuma Wardani Edelani, Renovita Entin Martiana Kusumaningtyas Fardani Annisa Damastuti Faris Abdi El Hakim Faris Abdi El Hakim Fatihia, Wifda Muna Febrianti, Erita Cicilia Ferry Astika Saputra Fikriyah, Masnatul Firman Arifin Hamida, Silfiana Nur Harun, Ahmad Hestiasari Rante Hestiasari Rante Hidayah, Nadila Wirdatul Huda, Achmad Thorikul I Made Akira Ivandio Agusta I.G. Puja Astawa Idris Winarno Idris Winarno Ikawati, Yunia Ilham Iskandariansyah Imam Mustafa Kamal Istiqomah, Galuh Nurul Iwan Syarif iwan Syarif Jamilatul Badriyah Jauari Akhmad Nur Hasim Kanza, Rafly Arief Khasanah, A’at Khoirunnisa, Asy Syaffa Kholid Fathoni Kindarya, Fabyan Kirana Hanifati Kusuma, Oskar Galih Wira Kusuma, Selvia Ferdiana M Udin Harun Al Rasyid, M Udin Harun Madyono, Madyono Majid, Nur Syaela Marcell Bintang Setiawan Maulana, Rifqi Affan Mayangsari, Mustika Kurnia Mochammad Rizki Hidayat Mohammad Robihul Mufid Mohammad Robihul Mufid Mu'arifin Mu'arifin Much Chafid Much Chafid Much Chafid Mufid, Mohammad Robihul Mufid, Mohammad Robihul Muhammad Turmudzi Muhammad Turmudzi Nabilah, Anisah Nana Ramadijanti, Nana Nindy Ilhami Ninik Purwati Novita Putri Lestari Nur Rosyid Mubtadai, Nur Rosyid Nurhidayah - Nurhidayah - Oktavia Citra Resmi Rachmawati Pratama Eskaluspita Pratama, Chrysna Ardy Putra Primajaya, Grezio Arifiyan Puspasari Susanti Rachmawati, Oktavia Citra Resmi Rahmad Santosa Rahmana, Rizal Rante, Hestiasari Rengga Asmara Riyanto Sigit, Riyanto Rosiyah Faradisa Rossi Arisdiawan Rudi Kurniawan Sa'adah, Umi Safrudana, Maulyd Ahdan Saniyatul Mawaddah Sasmita, Rizka Rahayu Sesulihatien, Wahjoe Tjatur Setiawardhana Setiawardhana Setiawardhana Setiawardhana Setiawardhana Setiawardhana, Setiawardhana Shintia Dewi Rahmawati Sumarsono, Irwan Susanti, Puspasari Tessy Badriyah Tessy Badriyah, Tessy Tita Karlita Titis Octary Satrio Tri Harsono Tri Harsono Wahjoe Tjatur Sesulihatien Walujo, Ivana Yudith Wifda Muna Fatihia Wiratmoko Yuwono Yesta Medya Mahardhika Yoedy Moegiharto Yogi Pratama Yufi Eko Firmansyah Yunia Ikawati Zulfian Nafis