Claim Missing Document
Check
Articles

BIOFIKSASI CO2 OLEH MIKROALGA Spirulina sp DALAM UPAYA PEMURNIAN BIOGAS Fegi Yuliandri; Yudha Duta Utama; Luqman Buchori
JURNAL TEKNOLOGI KIMIA DAN INDUSTRI Volume 2, Nomor 4, Tahun 2013
Publisher : Jurusan Teknik Kimia, Fakultas Teknik, Universitas Diponegoro,

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (133.866 KB)

Abstract

The main component of biogas CH4,it is a renewable energy product that is expected to be the fuel gas. However, the presence of CO2 in the biogas decrease it’s heating value. The Purification of biogas is a solution to increase the heating value. One of eco-friendly way to purify biogas eco-friendly is by using microalgae Spirulina sp which has the CO2 Biofixation ability. This research intends to Determine the most effective flow rate of tubular type photobioreactor by using microalgae spirulina in absorbing CO2 and determine the optimum concentration of CO2 that can be absorbed by the microalgae Spirulina sp. This research is using flow rate of gas mixture (30% CO2 gas composition V: air 70% V) 0.2 L / sec, 0.5 L / sec, 1 L / sec, and 1.5 L / sec. And using composition of the feed gas (flow rate of 0.5 L / min) was 25% V CO2, 75% air V; CO2 30% V; air 70% V; V 35% CO2, 65% air V; CO2 40 % V, 60% air. The results obtained that the optimum flow rate for CO2 absroption is the flowrate  0.5 L / min with a feed gas composition CO2: air (30:70). Highest CO2 absorption amounted to 0.47%, and it doesnt reach the desired target of purification. So it needs to re-design the research’s tools to increase the amount of CO2 absorbed.
PENGIKATAN KARBON DIOKSIDA DENGAN MIKROALGA ( Chlorella vulgaris, Chlamydomonas sp., Spirullina sp. ) DALAM UPAYA UNTUK MENINGKATKAN KEMURNIAN BIOGAS Okryreza Abdurrachman; Meitiandari Mutiara; Luqman Buchori
JURNAL TEKNOLOGI KIMIA DAN INDUSTRI Volume 2, Nomor 4, Tahun 2013
Publisher : Jurusan Teknik Kimia, Fakultas Teknik, Universitas Diponegoro,

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (130.62 KB)

Abstract

Biogas is gas which the main contents are 55-75% methane and 25-45% carbon dioxide. Removing CO2 content in biogas will improving biogas’s quality itself, so that the calorific value  on biogas will be higher. One way to removing CO2is with utilize microalgae’s ability to absorb CO2in photosynthesis phenomena. Purposes of this research are to measure the optimal amount of CO2 absorbed by microalgae and determine the type of microalgae is the best at absorbing CO2. This research designed with variety types of microalgae such as Chlorella vulgaris, Chlamydomonas sp., and Spirulina sp. and variety gas flow rate variabels are 20, 60, 100, 150, 200, 300 mL / min. From analysis results,  at gas flow rate 20 mL / min each microalgae can absorb CO2optimally. Spirullina sp. has the highest percentage of absorbed CO2 among Chlorella vulgaris and Chlamydomonas sp., which is by 8,91%. This study also  showed that Spirullina sp. has 0,136 g/L biomass enhancement, and that is the highest biomass enhancement among Chlorella sp. and Chlamydomonas sp., which only has 0,136 g/L and 0,130 g/L biomass enhancement.
PENGARUH PENGERINGAN JAGUNG DENGAN METODE MIXED ADSORPTION DRYING MENGGUNAKAN ZEOLITE PADA UNGGUN TERFLUIDISASI TERHADAP KANDUNGAN LEMAK DAN PROTEIN JD Ryan Christy S; Muhammad Ulil Absori; Luqman Buchori
JURNAL TEKNOLOGI KIMIA DAN INDUSTRI Volume 1, Nomor 1, Tahun 2012
Publisher : Jurusan Teknik Kimia, Fakultas Teknik, Universitas Diponegoro,

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1570.415 KB)

Abstract

Corn (Zea mays L.) is one of the important world food crops, other than wheat and rice. Becausecorn is an important role as a source of food and medicine, the post-harvest handling is veryimportant because it determines the quality of the corn for the next use. Drying process byadsorption is an option to replace conventional corn drying systems. In our study, the zeolite asadsorbent was mixed with corn in campfire the fluidized with air at 30-50oC. The air willevaporate water from the corn, and at the same time, the zeolite will absorb the water from the air,so the humidity will be maintained low. Thus heat consumption can be lowered and drying willbecome faster. Required materials in this study are corn and zeolite. Research conducted usingfixed variable sampling time (15 minutes). Incoming air temperature(room temp, 30oC, 40oC, 50oC)and ratio between corn and zeolitedrying the corn, characterization must do first. The dried corn tested the water, protein, fatcontains and the colors. The results from this research show the best variable is variable with ratiobetween corn and zeolite (1:0, 1:3, 1:1, 3:1) are used as changing variables. Beforeappropriate with SNI standard for dried food ( 14 % ) is variable using incoming air temperature40oC and 50oC with ratio between corn and zeolite 1 : 3 and using incoming air temperature 50oC. The suitable variable andappropriate with SNI standard for dried food ( 14 % ) is variable using incoming air temperature 40oC and 50oC with ratio between corn and zeolite 1 : 3.
Corn Drying with Zeolite in The Fluidized Bed Dryer under Medium Temperature Mohamad Djaeni; Nurul Aishah Aishah; Harum Nissaulfasha; Luqman Buchori
IPTEK The Journal for Technology and Science Vol 24, No 2 (2013)
Publisher : IPTEK, LPPM, Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j20882033.v24i2.182

Abstract

Drying is an important step to find high quality of corn. Based on Standard of National Industry, populer as SNI, number 01-3920-1995, the corn was well stored at moisture content 14% or below (wet basis). However, conventional corn drying dealed with in-efficient energy process and corn quality degradation. This research evaluated the performance of corn drying assisted by zeolite as moisture adsorbent. In this process, the zeolite and corn were placed in the dryer fluidized by warm air as drying medium under 40 - 50oC. The air evaporated water product from corn, and at same time the zeolite adsorbed moisture in air. So, the relative humidity of air in dryer can be kept low in which enhanced the driving force for drying. Beside that, the moisture adsoprtion by zeolite was exothermic process that can supply the energy for drying or keep the dryer temperature. Thus, the drying rate can be faster. This work foccussed to observe the effect of drying temperature, air velocity, and corn to zeolite ratio on drying time as well as corn quality. As indicators, the drying rate was estimated and the proxymates content such as protein, fat, and carbohydrate content were analyzed. The results showed that compared with conventional fluidised bed dryer, corn drying with zeolite, can speed up drying time as well as improving the constant of drying rate. In addition, the corn proximate nutrition content can be well retained. At operating temperature 40oC, air velocity 9 m.s-1, and zeolite to corn ratio 1:2, the drying time can be 60 minutes shorter compared to that without zeolite.
Preparation, Characterization, and Activation of Co-Mo/Y Zeolite Catalyst for Coal Tar Conversion to Liquid Fuel Didi Dwi Anggoro; Luqman Buchori; Giveni Christina Silaen; Resti Nur Utami
Bulletin of Chemical Reaction Engineering & Catalysis 2017: BCREC Volume 12 Issue 2 Year 2017 (August 2017)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (17.253 KB) | DOI: 10.9767/bcrec.12.2.768.219-226

Abstract

One of many efforts to convert coal tar into alternative liquid fuel is by hydrocracking. This research aims to determine the impregnation of Co-Mo/Y zeolite, its characteristics, the effect of impregnation temperature and time, and also the best Co-Mo/Y zeolite impregnation condition for the conversion of coal tar. This research was conducted in several steps, impregnating Co from Co(NO3)2.6H2O and Mo from (NH4)6Mo7O24.4H2O into Zeolite Y in liquid media, drying at 100 °C for 24 hours, and calcination at 550 °C for 3 hours. Coal tar was then reacted with hydrogen gas (as a reactant), and Co-Mo/Zeolite Y (as a catalyst) was conducted at 350 °C. Characteristic analysis showed that Co and Mo had impregnated into the Y zeolite, as well as it made no change of catalyst’s structure and increased the total acidity. The higher of impregnation temperature was increased the catalyst crystallinity, total acidity, and yield of gasoline. The longer impregnation time was reduced crystallinity value, but total acidity and yield were increased. GC analysis showed that products included into the gasoline product (C8, C9, and C10). 
Effect of Co and Mo Loading by Impregnation and Ion Exchange Methods on Morphological Properties of Zeolite Y Catalyst Didi Dwi Anggoro; Nur Hidayati; Luqman Buchori; Yayuk Mundriyastutik
Bulletin of Chemical Reaction Engineering & Catalysis 2016: BCREC Volume 11 Issue 1 Year 2016 (April 2016)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (441.259 KB) | DOI: 10.9767/bcrec.11.1.418.75-83

Abstract

Coal tar can be used as an alternative raw material for the production of liquid fuels, such as: gasoline and diesel through hydrogenation and cracking process. Hydrogenation and cracking process requires a catalyst which has metal components for hydrogenation reaction and acid components for cracking reaction. In this study, the Co/Zeolite Y and Co-Mo/Zeolite Y catalysts were prepared by impregnation and ion exchange methods. Characterizations of the catalysts were carried out by X-Ray Diffraction (XRD) and gravimetric acidity. The catalysts were tested for coal tar conversion to liquid fuel under various temperatures, amount of catalyst and hydrogen flow rates in a fixed bed flow reaction system. Liquid fuels products were analyzed by gas chromatography (GC). The XRD Spectra indicated that the addition of Co and Mo metals did not affect catalysts structure, however it alters the percentage of crystallinity. The addition of Co metal using impregnation method caused reduction in crystallinity, while the addition of Mo caused improvement of crystallinity. The Co-Mo/Zeolite Y catalyst with highest crystallinity was obtained by loading using ion exchange method. The addition of Co and Mo metals caused increasing acidity. However, the increasing composition of Co and Mo loaded on Zeolite Y catalyst decreased the yield of liquid fuels from coal tar. It can be concluded that the yields of liquid fuels and the composition of gasoline fractions from hydrocracking of coal tar were highly dependent on  acidity of the catalyst. 
Reusability and Stability Tests of Calcium Oxide Based Catalyst (K2O/CaO-ZnO) for Transesterification of Soybean Oil to Biodiesel Istadi Istadi; Udin Mabruro; Bintang Ayu Kalimantini; Luqman Buchori; Didi Dwi Anggoro
Bulletin of Chemical Reaction Engineering & Catalysis 2016: BCREC Volume 11 Issue 1 Year 2016 (April 2016)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (356.738 KB) | DOI: 10.9767/bcrec.11.1.413.34-39

Abstract

This paper was purposed for testing reusability and stability of calcium oxide-based catalyst (K2O/CaO-ZnO) over transesterification reaction of soybean oil with methanol to produce biodiesel. The K2O/CaO-ZnO catalyst was synthesized by co-precipitation method of calcium and zinc nitrates followed by impregnation of potassium nitrate. The fresh and used catalysts were tested after regeneration. The catalysts were characterized by Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), and BET Surface Area in order to compare the catalyst structure between the fresh and used catalysts. The catalyst testing in transesterification proses was carried out at following operating conditions, i.e. catalyst weight of 6 wt.%, oil to methanol mole ratio of 1:15, and temperature of 60 oC. In addition, metal oxide leaching of K2O/CaO-ZnO catalyst during reaction was also tested. From the results, the catalysts exhibited high catalytic activity (80% fatty acid methyl ester (FAME) yield after three-cycles of usage) and acceptable reusability after regeneration. The catalyst also showed acceptable stability of catalytic activity, even after three-cycles of usage. 
Effects of Weight Hourly Space Velocity and Catalyst Diameter on Performance of Hybrid Catalytic-Plasma Reactor for Biodiesel Synthesis over Sulphated Zinc Oxide Acid Catalyst Luqman Buchori; Istadi Istadi; Purwanto Purwanto
Bulletin of Chemical Reaction Engineering & Catalysis 2017: BCREC Volume 12 Issue 2 Year 2017 (August 2017)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (126.339 KB) | DOI: 10.9767/bcrec.12.2.775.227-234

Abstract

Biodiesel synthesis through transesterification of soybean oil with methanol on hybrid catalytic-plasma reactor over sulphated zinc oxide (SO42-/ZnO) active acid catalyst was investigated. This research was aimed to study effects of Weight Hourly Space Velocity (WHSV) and the catalyst diameter on performance of the hybrid catalytic-plasma reactor for biodiesel synthesis. The amount (20.2 g) of active sulphated zinc oxide solid acid catalysts was loaded into discharge zone of the reactor. The WHSV and the catalyst diameter were varied between 0.89 to 1.55 min-1 and 3, 5, and 7 mm, respectively. The molar ratio of methanol to oil as reactants of 15:1 is fed to the reactor, while operating condition of the reactor was kept at reaction temperature of 65 oC and ambient pressure. The fatty acid methyl ester (FAME) component in biodiesel product was identified by Gas Chromatography - Mass Spectrometry (GC-MS). The results showed that the FAME yield decreases with increasing WHSV. It was found that the optimum FAME yield was achieved of 56.91 % at WHSV of 0.89 min-1 and catalyst diameter of 5 mm and reaction time of 1.25 min. It can be concluded that the biodiesel synthesis using the hybrid catalytic-plasma reactor system exhibited promising the FAME yield. 
Optimization of Monoglycerides Production Using KF/CaO-MgO Heterogeneous Catalysis Luqman Buchori; Didi Dwi Anggoro; Indro Sumantri; Riko Rikardo Putra
Bulletin of Chemical Reaction Engineering & Catalysis 2019: BCREC Volume 14 Issue 3 Year 2019 (December 2019)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (2655.954 KB) | DOI: 10.9767/bcrec.14.3.4251.689-696

Abstract

The production of monoglyceride or monoacylglycerol (MAG) from triglycerides and glycerol has been studied. The purpose of this research was to study the effect of using KF/CaO-MgO catalyst on MAG production with batch reactor. The effect of reaction temperature, reaction time, and catalyst loading was investigated using Response Surface Methods (RSM). The reaction temperature, reaction time, and catalyst loading were varied at 200-220 ºC,  2-4 hours, and 0.1-0.3 % w/w, respectively. The maximum yield of monoglyceride 41.58% was achieved the optimum conditions of  catalyst loading of 0.19 % (w/w), reaction temperature of 208.4 ºC, and reaction time of 3.20 hours.  
Basicity Optimization of KF/Ca-MgO Catalyst using Impregnation Method Didi Dwi Anggoro; Luqman Buchori; Setia Budi Sasongko; Herawati Oktavianty
Bulletin of Chemical Reaction Engineering & Catalysis 2019: BCREC Volume 14 Issue 3 Year 2019 (December 2019)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (2323.229 KB) | DOI: 10.9767/bcrec.14.3.4248.678-682

Abstract

This research aimed at determining the optimum value between calcination temperature (X1), calcination time (X2) and %wt KF (X3) toward optimum basicity of KF/Ca-MgO catalyst. Approximately 2-4%wt KF was added to the KF/Ca-MgO catalyst using the impregnation method to assist the Ca-MgO, at 450-550 ºC and a calcination time of 2-4 hours. Furthermore, its basicity was analyzed using Tanabe's titration method. The use of Variance Analysis (ANOVA), indicated that calcination temperature (X1) factor achieved the highest basicity of KF/Ca-MgO catalyst, as indicated by its high F-value (16.46262) and low p-value (0.0067). The correlation between each operating variables and the responses were shown in a mathematical equation. The optimization value is estimated by limiting the calcination temperature from 415.9 to 584.1 ºC, with a calcination time ranging from 1.32 to 4.68 hours, and %wt KF of 1.3182 to 4.6818 % that obtained 1.18 mmol/g for the optimal catalyst basicity. 
Co-Authors . Widayat Amin Nugroho Anggun Kurniawan Anindita Indriana Aprilina Purbasari Ardian D. Yudhistira Aris Bagus Pradana, Aris Bagus Arman, Mhd. Adithia Perdana Arum Sakti Prasetyo Astrilia Damayanti B Budiyono Berkah Fajar Bintang Ayu Kalimantini Boby Gusman Irianto Samosir Budi Sasongko Setia Budiyono Budiyono Chusnul Khotimah Dewi Fatmawati Didi D. Anggoro Didi D. Anggoro Didi Dwi Anggoro Dinda Labibah Ubay Dyah Hesti Wardhani Dyah Hesti Wardhani Fachmy Adji Pangestu Setiawan Faleh Setia Budi Faleh Setia Budi Faleh Setia Budi Fegi Yuliandri Fradriyan Aulia Giveni Christina Silaen Hadiyanto Hantoro Satriadi Hargono Hargono Harum Nissaulfasha Herawati Oktavianty Heri Cahyono Heru Susanto I Nyoman Widiasa I. Istadi I.G.B Ngurah Makertihartha Indro Sumantri Inshani Utami Istadi Istikhoratun, Titik JD Ryan Christy S Khonsa Syahidah Kusmiyati Kusmiyati Laeli Kurniasari M. Dani Supardan M. Dani Supardan M. Djaeni Maria Augustine Graciafernandy Meitiandari Mutiara Mhd. Shaumi Al Anshar Muhamad, Theobroma Guntur Muhammad Ulil Absori Nadia Taradissa Maheswari Ndaru Okvitarini Ngadi, Norzita Nita Aryanti Norzita Ngadi Nur Hidayati Nurjati Solikhin Nurul Aishah Aishah Nurushofa, Faustina Alda Okryreza Abdurrachman P Purwanto Pakpahan, Agnes J. Pakpahan, Andre W. S. Pratama, Pambudi Pajar Pratama, Wahyu Diski Pratiwi, Wahyu Zuli Purwanto Purwanto Purwanto Purwanto Putri Diliyan Shakti Ratnawati Ratnawati Resti Nur Utami Riko Rikardo Putra Riyanto, Teguh Rizki Andre Handika Roikhatus Solikhah Salsabila, Unik Hanifah Saputra, Roni Ade Setia Budi Sasongko Setia Budi Sasongko Setiadi, Iqfan Dwi Silviana Silviana Siswo Sumardiono Suherman Suherman Suherman Suherman Sulardjaka Sulardjaka Sulardjaka, S Syarief, Elijah Teguh Riyanto Teuku Irfan Maulana Titik Istirokhatun Udin Mabruro Wahyu Fitriani Widayat Widayat Widayat Yayuk Astuti Yazid Bindar Yazid Bindar Yudha Duta Utama