Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Reaktor

NON-DISSOLVED SOLIDS REMOVAL DURING PALM KERNEL OIL ULTRAFILTRATION Mubiar Purwasasmita; Petrus Benny Juwono; Aysha Mareta Karlina; Khoiruddin Khoiruddin; I Gede Wenten
Reaktor Volume 14, No. 4, OKTOBER 2013
Publisher : Dept. of Chemical Engineering, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (300.96 KB) | DOI: 10.14710/reaktor.14.4.284-290

Abstract

Performance of polypropylene hollow fiber ultrafiltration membrane during non-dissolved solids (NDS) removal from palm kernel oil is investigated. The filtration is operated at difference feed temperature and pressure to study the effect of both parameters on membrane performance. From the experimental results, it can be concluded that polypropylene hydrophobic hollow fiber membrane can be used for palm kernel oil NDS removal. Temperature and trans-membrane pressure have proportional effect to permeate flux. In contrast, they have inverse effect to rejection of NDS. During the experiment, permeate fluxes and rejections of NDS varied from 3.4 to 8.7 L/m2.h and from 51% to 94%, respectively. The best operating conditions suggested are feed temperature of 30°C and TMP of 1 bar which produce the highest NDS rejection. In addition, the permeate quality can meet the requirement of standard NDS content even at its lowest rejection level which shows the remarkable performance of membrane filtration.
Heterogeneous Polypropylene-Based Cation-Exchange Membrane Modified by Functionalized Zinc Oxide Particles for Vanadium Redox Flow Battery Khoiruddin, Khoiruddin; Firmansyah, Rizky W.; Yulanda, Nanda; Wardani, Anita K.; Wenten, I Gede
Reaktor Volume 24 No.2 August 2024
Publisher : Department of Chemical Engineering, Faculty of Engineering, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/reaktor.24.2.58-67

Abstract

This work presents the synthesis and characterization of heterogeneous cation-exchange membranes based on polypropylene (PP) and cation-exchange resin (IER) powder, developed via melt spinning. The membranes were modified with zinc oxide (ZnO) nanoparticles functionalized with polydopamine (PDA) to enhance their electrochemical properties. The effects of varying IER content and ZnO/PDA loading on key membrane properties, including ion-exchange capacity (IEC), water uptake (WU), water contact angle (WCA), proton conductivity, water permeability, and vanadium permeability, were systematically investigated. The results demonstrated that increasing IER content improved proton conductivity and IEC, but also increased vanadium permeability. The PP/ZnO-PDA (Z-2.5) membrane, with 2.5%-wt. ZnO/PDA, showed reduced water permeability (0.46 L·m⁻²·h⁻¹·bar⁻¹) and vanadium permeability (5.67 × 10⁻⁵ cm² min⁻¹), while maintaining moderate proton conductivity (13.17 mS/cm). However, increasing ZnO/PDA content beyond 2.5%-wt. led to declines in WU, IEC, and proton conductivity, likely due to nanoparticle aggregation reducing access to ion-exchange sites.