This Author published in this journals
All Journal International Journal of Electrical and Computer Engineering IAES International Journal of Artificial Intelligence (IJ-AI) Jurnal Teknologi Dan Industri Pangan Jurnal Pustakawan Indonesia ComEngApp : Computer Engineering and Applications Journal Journal of Tropical Life Science : International Journal of Theoretical, Experimental, and Applied Life Sciences TELKOMNIKA (Telecommunication Computing Electronics and Control) Jurnal Ilmu Komputer dan Agri-Informatika Jurnal Ilmiah Kursor Biogenesis: Jurnal Ilmiah Biologi Jurnal Teknologi Informasi dan Ilmu Komputer Journal of ICT Research and Applications International Journal of Advances in Intelligent Informatics Indonesian Journal of Biotechnology Seminar Nasional Informatika (SEMNASIF) Sosio Konsepsia Khazanah Informatika: Jurnal Ilmu Komputer dan Informatika Jurnal Teknologi dan Sistem Komputer Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Jurnal Penelitian Pendidikan IPA (JPPIPA) Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control ILKOM Jurnal Ilmiah Jurnal Nasional Pendidikan Teknik Informatika (JANAPATI) Komputasi: Jurnal Ilmiah Ilmu Komputer dan Matematika Jurnal Jamu Indonesia Journal of Electronics, Electromedical Engineering, and Medical Informatics VISI PUSTAKA: Buletin Jaringan Informasi Antar Perpustakaan JURNAL Al-AZHAR INDONESIA SERI SAINS DAN TEKNOLOGI Indonesian Journal of Electrical Engineering and Computer Science Nusantara Science and Technology Proceedings Bioinformatics and Biomedical Research Journal Jurnal Pustakawan Indonesia Jurnal Nasional Teknik Elektro dan Teknologi Informasi J-Icon : Jurnal Komputer dan Informatika Indonesian Journal of Jamu
Claim Missing Document
Check
Articles

Found 3 Documents
Search
Journal : Jurnal Teknologi dan Sistem Komputer

Identifikasi protein signifikan pada interaksi protein-protein penyakit Alzheimer menggunakan algoritme top-k representative skyline query Mohammad Romano Diansyah; Wisnu Ananta Kusuma; Annisa Annisa
Jurnal Teknologi dan Sistem Komputer Volume 9, Issue 3, Year 2021 (July 2021)
Publisher : Department of Computer Engineering, Engineering Faculty, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/jtsiskom.2021.13985

Abstract

Penyakit Alzheimer merupakan penyakit neurodegeneratif yang paling umum terjadi. Kajian ini bertujuan melakukan analisis protein-protein interaction (PPI) yang dapat memberikan pemahaman lebih baik terhadap penyakit neurodegeneratif dan bisa digunakan untuk menemukan protein yang memiliki peran signifikan pada penyakit Alzheimer. Data PPI diperoleh dari eksperimen dan prediksi komputasional. PPI dapat dianalisis menggunakan centrality measures. Metode Top-k RSP digunakan untuk menemukan protein signifikan dengan menggunakan aturan dominansi dan digunakan pada sumber data interaksi eksperimen dan eksperimen+prediksi. Hasil penelitian ini menunjukkan bahwa APP dan PSEN1 merupakan protein signifikan untuk penyakit Alzheimer. Selain itu, kedua sumber data (eksperimen+prediksi) dan algoritme Top-k RSP terbukti dapat digunakan untuk analisis PPI dari penyakit Alzheimer.
Model deep learning untuk klasifikasi fragmen metagenom dengan spaced k-mers sebagai ekstraksi fitur Nur Choiriyati; Yandra Arkeman; Wisnu Ananta Kusuma
Jurnal Teknologi dan Sistem Komputer Volume 8, Issue 3, Year 2020 (July 2020)
Publisher : Department of Computer Engineering, Engineering Faculty, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/jtsiskom.2020.13407

Abstract

An open challenge in bioinformatics is the analysis of the sequenced metagenomes from the various environments. Several studies demonstrated bacteria classification at the genus level using k-mers as feature extraction where the highest value of k gives better accuracy but it is costly in terms of computational resources and computational time. Spaced k-mers method was used to extract the feature of the sequence using 111 1111 10001 where 1 was a match and 0 was the condition that could be a match or did not match. Currently, deep learning provides the best solutions to many problems in image recognition, speech recognition, and natural language processing. In this research, two different deep learning architectures, namely Deep Neural Network (DNN) and Convolutional Neural Network (CNN), trained to approach the taxonomic classification of metagenome data and spaced k-mers method for feature extraction. The result showed the DNN classifier reached 90.89 % and the CNN classifier reached 88.89 % accuracy at the genus level taxonomy.
Prediksi interaksi protein-protein berbasis sekuens protein menggunakan fitur autocorrelation dan machine learning Syahid Abdullah; Wisnu Ananta Kusuma; Sony Hartono Wijaya
Jurnal Teknologi dan Sistem Komputer Volume 10, Issue 1, Year 2022 (January 2022)
Publisher : Department of Computer Engineering, Engineering Faculty, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/jtsiskom.2021.13984

Abstract

Protein-protein interaction (PPI) can define a protein's function by knowing the protein's position in a complex network of protein interactions. The number of PPIs that have been identified is relatively small. Therefore, several studies were conducted to predict PPI using protein sequence information. This research compares the performance of three autocorrelation methods: Moran, Geary, and Moreau-Broto, in extracting protein sequence features to predict PPI. The results of the three extractions are then applied to three machine learning algorithms, namely k-Nearest Neighbor (KNN), Random Forest, and Support Vector Machine (SVM). The prediction models with the three autocorrelation methods can produce predictions with high average accuracy, which is 95.34% for Geary in KNN, 97.43% for Geary in RF, and 97.11% for Geary and Moran in SVM. In addition, the interacting protein pairs tend to have similar autocorrelation characteristics. Thus, the autocorrelation method can be used to predict PPI well.
Co-Authors Abdul Aziz Abdul Rahman Saleh Adrianus, Albert Agus Buono Ahmad, Tarmizi Aini Fazriani Aisah Rini Susanti Alami, Tegar Ali Djamhuri Annisa Annisa Annisa , Annisa Annisa Annisa Annisa Annisa Annisa Annisa Annisa Annisa Anton Suryatama Arini Aha Pekuwali Arini Pekuwali Arwan Subakti Ary Prabowo Ary Prabowo Auliatifani, Reza Auliya Ilmiawati Auriza Rahmad Akbar Azizah, Norma Nur Azzahra, Syarifah Fathimah Badollahi Mustafa Badrut Tamam Bahrul Ulum BUDI TJAHJONO Budi Tjahjono Dahrul Syah Diah Handayani Dian Indah Savitri Dian Kartika Utami Essy Harnelly Fadli , Aulia Fahrury Romdendine, Muhammad Farhan Ramadhani , Hilmi Farit Mochamad Afendi Farohaji Kurniawan Fatriani, Rizka Fazriani, Aini Firman Ardiansyah Ginoga, Muh Fadhil Al-Haaq Halida Ernita Handayani, Vitri Aprilla Handayani, Vitri Aprilla Hanifah Nuryani Lioe Hardi, Wishnu Hasibuan, Lailan Sahrina Hendra Rahmawan Hendra Rahmawan Hera Dwi Novita Heru Sukoco Imas Sukaesih Sitanggang Indra Astuti Ira Maryati Irfan Wahyudin Irma Herawati Suparto Irman Hermadi Irmanida Batubara Irvan Lewenusa ISKANDAR ZULKARNAEN SIREGAR Isnan Mulia Janti G. Sudjana Jaya Sena Turana Joni Prasetyo Kana Saputra S Kangko, Danang Dwijo Karlisa Priandana Khaydanur Khaydanur Khaydanur, Khaydanur Laela Wulansari Larasati Larasati Lina Herlina Tresnawati Listina Setyarini Lusi Agus Setiani M. Rafi Maggy T. Suhartono Mala Nurilmala Medria Kusuma Dewi Hardhienata Mohamad Rafi Mohamad Rafi Mohamad Rafi Mohammad Romano Diansyah Mohammad Romano Diansyah Muchlishah Rosyadah Muhammad Asyhar Agmalaro Muhammad Subianto Mulyati Mulyati Mushthofa Muttaqin, Muhammad Rafi Nasution, Tegar Alami Nengsih, Nunuk Kurniati Norma Nur Azizah Nunuk Kurniati Nengsih Nur Choiriyati Nurdevi Noviana Ovi Sofia Pramita Andarwati Prihasuti Harsani Priyo Raharjo Pudji Muljono Purnajaya, Akhmad Rezki Purnomo, Tsania Firqin Ramadhanti, Nabila Sekar Ramdan Satra Ratu Mutiara Siregar Refianto Damai Darmawan Refianto Damai Darmawan Resnawati Reza Auliatifani Rif’ati, Lutfah Rizky Maulidya Afifa Ronald Marseno Rosy Aldina Rosyadah, Muchlishah Rudi Heryanto SATRIYAS ILYAS Septaningsih, Dewi Anggraini Siti Syahidatul Helma Sony Hartono Wijaya Sri Nurdiati SUHARINI, YUSTINA SRI Sulistyo Basuki Sulistyo Basuki Supriyanto, Arif Syahid Abdullah Syarifah Aini Syukriyansyah Taufik Djatna Toni Afandi Tsania Firqin Purnomo Usman, Muhammad Syafiuddin Wa Ode Rahma Agus Udaya Manarfa Wahjuni, Sri Widya Sari Wijaya, Eko Praja Hamid Wina Yulianti Wishnu Hardi Wulansari, Laela Yandra Arkeman Yessy Yanitasari Yudhi Trisna Atmajaya Yulianah Yulianah Yunita Fauzia Achmad Zulkarnaen, Silvia Alviani