Claim Missing Document
Check
Articles

KARAKTERISTIK LAJU PENGERINGAN PADA MESIN PENGERING PAKAIAN SISTEM POMPA KALOR Cakra M. A.; Himsar Ambarita; Taufiq B. N; Alfian Hamsi; Terang UHS Ginting; Pramio G. S
DINAMIS Vol. 4 No. 3 (2016): Dinamis
Publisher : Talenta Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1308.738 KB) | DOI: 10.32734/dinamis.v4i3.7085

Abstract

Penelitian ini dilatarbelakangi oleh masalah yang sering dihadapi jasa laundry pada penyediaan mesin untuk pengering pakaian. Selama ini mesin pengering pakaian yang beredar di pasaran, sumber panasnya beragam, mulai dari uap panas (steam), gas (api) atau listrik (heater). Energi yang digunakan untuk prosedur ini sangat besar (energi yang dihasilkan lebih besar daripada yang dapat dimanfaatkan). Melalui pembuatan model fisik mesin portable pengering pakaian berdasarkan pompa kalor ini, diharapkan dapat menghemat energi. Tujuan penelitian ini adalah untuk mengetahui performansi siklus kompresi uap pada mesin pengering pakaian sistem pompa kalor daya 1 PK serta mengetahui karakteristik laju pemgeringan pakaian. Penelitian ini menggunakan metode perhitungan termodinamika dengan refrigeran yang dipakai Hydro Chloro Fluoro Carbon (HCFC-22). Hasil dari penelitian ini diperoleh koefisien performansi siklus kompresi uap atau Coefficient of Perfomance (COP) dan karakteristik laju pengeringan pakaian.
RANCANG BANGUN PROTOTIPE ALAT PEMANAS AIR TENAGA SURYA SISTEM PIPA PANAS Andre J.D Manurung; Himsar Ambarita; Taufiq B. N.; Tulus B. Sitorus; Dian M. Nasution
DINAMIS Vol. 6 No. 1 (2018): Dinamis
Publisher : Talenta Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1120.98 KB) | DOI: 10.32734/dinamis.v6i1.7086

Abstract

Energi surya yang sampai ke permukaan bumi, dapat dikumpulkan dan diubah menjadi energi panas yang berguna melalui bantuan suatu alat yang disebut kolektor surya. Kolektor termal surya merupakan suatu peralatan yang digunakan untuk menyerap energi surya, yang kemudian mengubah energi surya menjadi energi termal, dan mentransfer energi tersebut ke fluida kerja untuk kemudian digunakan secara langsung atau disimpan terlebih dahulu pada suatu unit penyimpanan panas. Dalam aplikasinya kolektor termal surya banyak digunakan sebagai alat pemanas air pada rumah-rumahPada umumnya air panas diperoleh dengan cara memasak air dengan menggunakan bahan bakar. Tujuan dari rancang bangun ini adalah Merancang sebuah kolektor alat pemanas air tenaga surya sistem pipa – panas,Mengetahui intensitas radiasi yang diterima oleh kolektor surya plat datar. Alat yang dirancang adalah kolektor surya dengan ukuran 1,16 m x 0,80 m x 0,21 m. Kolektor surya terdiri dari lapisan kayu(Triplek), sterofoam dan rockwoll sebagai isolator, plat alumunium sebagai penyerap panas dan kaca sebagai penutup. Selain kolektor, dirancang juga ruang penampungan sebagai tempat pemanas air dengan ukuran 0,80 m x 0,45 m x 0,23 m dengan volume tampungan 5 liter. Pengujian dilakukan selama 5 (lima) hari pada kondisi cuaca cerah. Dari hasil analisis yang dilakukan diperoleh panas radiasi rata-rata yang dapat diserap kolektor adalah 1856,755 watt, kehilangan panas rata-rata Kolektor adalah 520,33 Watt.
RANCANG BANGUN DAN ANALISIS PERFORMANSI KOLEKTOR SURYA TIPE PLAT DATAR BERSIRIP Andri M. Sijabat; Himsar Ambarita; Tulus B. Sitorus; Farel H. Napitupulu; Terang UHS Ginting; Dian M. Nasution; Farida Ariani; M. Sabri
DINAMIS Vol. 4 No. 3 (2016): Dinamis
Publisher : Talenta Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (971.636 KB) | DOI: 10.32734/dinamis.v4i3.7089

Abstract

Pengeringan merupakan salah satu cara untuk mengurangi kadar air. Proses pengeringan yang umum dikenal adalah penjemuran secara langsung di bawah sinar matahari dan yang paling sering digunakan oleh para petani yang ada di Indonesia untuk mengeringkan hasil pertanian mereka. Cara ini masih sangat konvensional dan memiliki banyak kendala salah satunya adalah factor cuaca. Cuaca yang tidak menentu akan sangat mempengaruhi kualitas dari hasil panen yang dijemur. Kadar air yang terlalu tinggi akibat panas yang tidak cukup untuk mengurangi kadar air akan memicu berkembangnya mikroba atau jamur yang dapat mengakibatkan pembusukan. Oleh karena itu, dirancang sebuah alat untuk dapat membantu petani memaksimalkan pengeringan hasil pertanian mereka. Alat yang dirancang adalah kolektor surya tipe plat datar bersirip dengan ukuran 2 m x 2 m x 0,17 m. Kolektor surya terdiri dari lapisan kayu, sterofoam dan rockwoll sebagai isolator, plat alumunium sebagai penyerap panas dan kaca sebagai penutup. Selain kolektor, dirancang juga ruang pengering sebagai tempat pengeringan hasil pertanian dengan ukuran 2 m x 1 m x 1 m. Sampel yang digunakan dalam pengujian alat ini adalah ubi kayu (cassava) dan cabai merah. Besarnya efisiensi kolektor diperoleh dengan melakukan pengujian selama 2 (dua) hari pada kondisi cuaca cerah dan juga melalui analisis perhitungan. Dari hasil analisis yang dilakukan diperoleh panas radiasi rata-rata yang dapat diserap kolektor adalah 1856,755 watt, kehilangan panas rata-rata pada kolektor adalah 442,57 watt dan efisiensi rata-rata dari kolektor surya yang didapat selama proses pengujian adalah 69,70%.
PENGUJIAN KEMAMPUAN ADSORPSI DARI ADSORBEN ALUMINA AKTIF UNTUK MESIN PENDINGIN TENAGA SURYA Abdi Z. A. M.; Himsar Ambarita; Tulus B. Sitorus; Farel H. Napitupulu; Andianto P.
DINAMIS Vol. 6 No. 1 (2018): Dinamis
Publisher : Talenta Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1469.885 KB) | DOI: 10.32734/dinamis.v6i1.7095

Abstract

Akhir-akhir ini mesin pendingin siklus adsorpsi semakin banyak diteliti oleh para ahli karenadisamping ekonomis juga ramah lingkungan dan menggunakan energy terbarukan yaitu energi surya.Agar proses adsorpsi dan desorpsi mesin pendingin adsorpsi dapat berjalan dengan baik perludiketahui jumlah perbandingan yang ideal antara adsorben dengan refrigeran yang digunakan. Disiniuntuk mencari perbandingan antara absorben alumina aktif menggunakan baut maupun tidakmenggunakan baut. Data tersebut dapat dicari menggunakan alat penguji kapasitas adsorpsi. Alatpenguji kapasitas adsorpsi yang digunakan dilengkapi dengan lampu halogen 1000 W sebagai sumberpanas. Adsorber pada alat penguji ini terbuat dari bahan stainless steel yang bertujuan agar tahanterhadap korosi akibat dari variasi refrigeran yang digunakan. Alumina aktif yang digunakan sebagaiadsorben sebanyak 1 kg. Sedangkan variasi refrigeran yang digunakan yaitu amonia. Kapasitas amoniayang dapat diadsorpsi dan didesorpsi oleh adsorben alumina aktif mengunakan baut diisolasi adalahsebanyak 300 mL. Sedangkan kapasitas amonia yang dapat diadsorpsi dan didesorpsi oleh adsorbenalumina aktif tidak menggunakan baut diisolasi adalah sebanyak 220 mL.
PENGUJIAN KEMAMPUAN ADSORPSI DARI ADSORBEN KARBON AKTIF UNTUK MESIN PENDINGIN TENAGA SURYA Bonardo S.; Himsar Ambarita; Tulus B. Sitorus; Dian M. Nasution; Syahril Gultom
DINAMIS Vol. 6 No. 1 (2018): Dinamis
Publisher : Talenta Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1250.829 KB) | DOI: 10.32734/dinamis.v6i1.7097

Abstract

Akhir-akhir ini mesin pendingin siklus adsorpsi semakin banyak diteliti oleh para ahli karena disamping ekonomis juga ramah lingkungan dan menggunakan energy terbarukan yaitu energi surya. Agar proses adsorpsi dan desorpsi mesin pendingin adsorpsi dapat berjalan dengan baik perlu diketahui jumlah perbandingan yang ideal antara adsorben dengan refrigeran yang digunakan. Disini untuk mencari perbandingan antara absorben karbon aktif menggunakan baut maupun tidak menggunakan baut. Data tersebut dapat dicari menggunakan alat penguji kapasitas adsorpsi. Alat penguji kapasitas adsorpsi yang digunakan dilengkapi dengan lampu halogen 1000 W sebagai sumber panas. Adsorber pada alat penguji ini terbuat dari bahan stainless steel yang bertujuan agar tahan terhadap korosi akibat dari refrigeran yang digunakan. karbon aktif yang digunakan sebagai adsorben sebanyak 1 kg. Sedangkan refrigeran yang digunakan yaitu metanol. Kapasitas metanol yang dapat diadsorpsi dan didesorpsi oleh adsorben karbon aktif mengunakan baut adalah sebanyak 350 mL. Sedangkan kapasitas metanol yang dapat diadsorpsi dan didesorpsi oleh adsorben karbon aktif tidak menggunakan baut adalah sebanyak 275 mL.
ANALISA KONSUMSI DAN BIAYA ENERGI PADA MESIN PENGERING PAKAN TERNAK SISTEM POMPA KALOR DENGAN DAYA 1 PK Ronal P Hutagalung; Himsar Ambarita; Tulus B. Sitorus; Dian M. Nasution; Terang UHS Ginting; Andianto Pintoro; Taufiq B. N; Farel H. Napitupulu
DINAMIS Vol. 4 No. 3 (2016): Dinamis
Publisher : Talenta Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (936.011 KB) | DOI: 10.32734/dinamis.v4i3.7103

Abstract

Analisa ini bertujuan untuk mengatasi masalah yang dihadapai para produsen pakan ternak untuk mengeringkan pakan ternak yang sudah dicacah dalam keadaan lembab menjadi kering agar tahan lebih lama. Oleh sebab itu dilakukan perancangan yang bertujuan untuk menghasilkan suatu unit mesin pengering pakan ternak portable dengan menggunakan AC rumah yang berorientasikan pada upaya efisiensi energi listrik yang dapat diaplikasin pada skala kecil dan besar . Analisa konsumsi dan biaya energi pada mesin pengering pakan ternak sistem pompa kalor dengan daya 1 PK ini didasarkan pada hasil perhitungan teoritis dan pompa kalor yang digunakan beroperasi menggunakan siklus kompresi uap menjadi batasan masalahnya. Manfaat penelitian ini adalah untuk memenuhi kebutuhan pengeringan pada sektor peternakan, pertanian, maupun home industry khususnya bagi wilayah- wilayah yang memiliki tingkat curah hujan yang tinggi di Indonesia. Kesimpulan perancangan ini diperoleh bahwa nilai laju ekstraksi air spesifik (Spesific Moisture Extraction Rate) untuk mesin pengering pakan ternak sistem pompa kalor adalah 0.0106 kg/kWh. Besarnya konsumsi energi spesifik (Spesific Energi Consumption) pada mesin pengering pakan ternak ini adalah 22,787 kWh/kg. Biaya Pokok Produksi yang dibutuhkan untuk proses pengeringan 1 kg pakan ternak dengan menggunakan sistem pompa kalor adalah Rp 20,012,- per kilogram.
ANALISA PERHITUNGAN KONSUMSI DAN BIAYA ENERGI UNTUK MESIN PENGERING PAKAIAN SISTEM POMPA KALOR DENGAN DAYA 1 PK Syalimono S; Himsar Ambarita; Farida Ariani; Alfian Hamsi; Tugiman; Syahril Gultom
DINAMIS Vol. 4 No. 3 (2016): Dinamis
Publisher : Talenta Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1049.192 KB) | DOI: 10.32734/dinamis.v4i3.7104

Abstract

Analisa ini bertujuan untuk mengatasi masalah yang dihadapai usaha laundry pada penyediaan mesin untuk pencuci dan pengering yang dapat bekerja cepat. Oleh sebab itu dilakukan perancangan yang bertujuan untuk menghasilkan suatu unit mesin pengering pakaian portable dengan menggunankan AC rumah yang berorientasikan pada upaya efisiensi energi listrik yang dapat diaplikasikan pada skala kecil dan besar . Analisa perhitungan konsumsi dan biaya energi untuk mesin pengering pakaian sistem pompa kalor dengan daya 1 Pk didasarkan pada hasil perhitungan teoritis dan pompa kalor yang digunakan beroperasi menggunakan siklus kompresi uap menjadi batasan masalahnya. Manfaat penelitian ini adalah untuk memenuhi kebutuhan pengeringan pakaian pada sektor rumah tangga, khususnya usaha laundry di Indonesia. Metode yang digunakan untuk mencapai tujuan melalui perhitungan termodinamika dengan refrigeran yang dipakai HCFC-22. Kesimpulan perancangan ini diperoleh Spesific Energy Consumption (SEC) berbanding terbalik dengan Spesific Moisture Extraction Rate (SMER). Untuk pengujian pengeringan kemeja memiliki rata-rata 22 kWh/kg dan pengeringan 1 pc celana jeans 41 kWh/kg. Dengan Biaya yang dibutuhkan untuk proses pengeringan dengan menggunakan sistem pompa kalor berikut berkisar Rp 46,625,- per kilogram air.
ANALISA SALURAN PENGERING BERBENTUK SILINDER PADA MESIN PENGERING PAKAN TERNAK SISTEM POMPA KALOR Dunan Ginting; Himsar Ambarita; Farel H. Napitupulu; A. Husein Siregar; Andianto P.
DINAMIS Vol. 6 No. 2 (2018): Dinamis
Publisher : Talenta Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1718.092 KB) | DOI: 10.32734/dinamis.v6i2.7131

Abstract

Analisa ini bertujuan untuk mengatasi masalah yang dihadapai para produsen pakan ternak untuk mengeringkan pakan ternak yang sudah dicacah dalam keadaan lembab menjadi kering agar tahan lebih lama.Adapun yang menjadi tujuan pada penelitian ini adalah untuk mengetahui nilai rasio humiditas udara yang terdapat pada saluran pengering, untuk mengetahui laju perpindahan panas disaluran pengering, untuk mengetahui laju pengeringan pakan ternak, untuk mengetahui laju ekstraksi penguapan spesifik, untuk mengetahui kebutuhan energi spesifik, dan untuk mengetahui biaya yang dibutuhkan saat proses pengeringan.Sebelum pengujian dilakukan terlebih dahulu disiapkan alat dan bahan pengujian ,kemudian pakan ternak ditimbang hingga massanya 1000 gram.Pakan ternak tersebut dijatuhkan dari masuk saluran menuju keluar saluran dan ditimbang pengurangan massa yang terjadi .Hasil analisa diperoleh bahwa nilai rata –rata rasio humiditas pada masuk saluran sebesar 22,04 g/kg dan pada keluar saluran sebesar 21,84 g/kg . Nilai laju perpindahan panas pada saluran pengering adalah 155,76 W dan nilai koefisien geseknya sebesar 23,1887. Nilai laju pengeringan pakan ternak pada saluran pengering adalah 0.1374 kg/jam.Nilai laju ekstraksi air spesifik adalah 0.096 kg/kWh. Konsumsi energi spesifik untuk adalah 10,407 kWh/kg.Biaya yang dibutuhkan untuk proses pengeringan adalah Rp 10.053,71,- per kilogram.
RANCANG BANGUN RUANG PENGERING UNTUK ALAT PENGERING BIJI KOPI SISTEM KONTINU DENGAN DESIKAN Harry K. J. Munthe; Himsar Ambarita; Dian M. Nasution; Ahmad H. Siregar
DINAMIS Vol. 7 No. 1 (2019): Dinamis
Publisher : Talenta Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1428.55 KB) | DOI: 10.32734/dinamis.v7i1.7171

Abstract

Sebagai salah satu Energi Baru Terbarukan (EBT) yang dapat dimanfaatkan di berbagai bidang, energi surya menjadi sumber energi yang sangat berpotensi mengingat Indonesia yang beriklim tropis. Salah satu pemanfaatan energi surya adalah pada bidang pertanian. Berbagai komoditas hasil pertanian perlu dikeringkan sebelum diproses lebih lanjut. Termasuk juga pada komoditas kopi yang sedang banyak digemari oleh banyak orang. Untuk itu, sebagai solusi dalam permasalahan lama waktu pengeringan dengan cuaca yang berubah-ubah, sebuah ruang dibuat sebagai media pengeringan. Dengan menghisap udara panas dari kolekor surya menggunakan exhaust, diharapkan panas akan terjaga di dalam ruang yang sudah di isolasi. Desain rak pengering dibuat bertingkat agar memanfaatkan ruang dengan maksimal. Hasil daripada ruangan yang sudah dibuat adalah dapat menjaga suhu paling rendah pada malam hari sebesar 26,6 °C dan suhu tertinggi sebesar 60,7 °C pada siang hari. Untuk suhu tertinggi rata-rata pada ruangan berada di rak paling bawah dekat sumber udara panas.
ANALISIS PENGARUH PENDINGINAN KACA LUAR ALAT DESALINASI AIR LAUT DOUBLE SLOPE SOLAR STILL William; Himsar Ambarita; Tulus B. Sitorus; Dian M. Nasution; Pramio G. Sembiring
DINAMIS Vol. 7 No. 2 (2019): Dinamis
Publisher : Talenta Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1070.317 KB) | DOI: 10.32734/dinamis.v7i2.7174

Abstract

Air mempunyai peranan penting dalam kehidupan manusia. Dalam kehidupan kita sehari-hari air merupakan sesuatu hal yang wajib kita konsumsi untuk keberlangsungan hidup. Sebagai salah satu negara dengan sumber daya air berupa laut terbesar di dunia tidak menjamin warga Indonesia untuk mendapatkan air bersih yang layak untuk dikonsumsi. Hal ini dikarenakan kebanyakan air yang sudah tercemar oleh limbah pabrik, industri dan rumah tangga. Sehingga kebutuhan akan air bersih semakin hari semakin meningkat ditambah dengan bertambahnya populasi manusia. Salah satu teknologi untuk mendapatkan air bersih adalah dengan destilasi tenaga surya. Penelitian ini bertujuan untuk mengetahui hasil produktivitas dan membandingkan efisiensi dari adanya pendinginan kaca luar dengan mengalirkan air dingin pada alat desalinasi air laut sistem pasif dengan kemiringan ganda. Hasil penelitian menunjukkan bahwa peningkatan efisiensi dari penggunaan air dingin sebagai pendinginan kaca luar adalah 40,39% dan 17,82% masing-masing secara teoritis dan aktual.
Co-Authors ., Mahadi A Halim Nasution A. Halim Nasution A. Husein Siregar A. Husein Siregar A.A. Ketut Agung Cahyawan W Abdi Hanra Sebayang Abdi Z. A. M. ABDI Z.A M Abdul H. Nasution Abdullah, Ilmi Adolf Ronny Adolf Ronny Adventus Silalahi Agorlif Efrata SIantur Ahmad H. Siregar Alfian Hamsi Amma Muliya R Amma Muliya R. Andianto P Andianto P. Andianto Pintoro Andika PP Tampubolon ANDRE J.D MANURUNG Andri M. Sijabat Ary Santony Ary Santony bin Nur, Taufiq Bisrul Hapis Tambunan, Bisrul Hapis BONARDO S Bonardo S. Burhanuddin, Tulus Cakra M. A Cakra M. A. Calvin Candra Bachtiar, Candra Danner Silaen David M. Hutabarat Dian M Nasution Dian M. Nasution Dian M.Nasution Dian Morfi Nasution Dina, Sari Farah Dina, Sari Farah DUNAN GINTING Efrin Simbolon Eko Yohanes Setiawan Eko Yohanes Setyawan Farel H Napitupulu Farel H. Napitupulu Farel H. Napitupulu Farel H. Napitupulu Farel H. Napitupulu Farel H. Napitupulu Farel H. Naptupulu Farida Ariani Farrel H Napitupulu Farrel H Napitupulu Fauzi Fauzi Ferdinan A. Lubis Firman Siahaan Firman W. Siahaan Firman W. Siahaan frans frans Frenky Christian Nababan Frenky Christian Nababan George Mager George Mager Gery P. Hutapea Gery P. Hutapea Gultom, Syahril H.V Sihombing Halim Nasution Harry K. J. Munthe Harry K.J Munthe Haznam Putra Herdy - Heri Firmansah Lumban Toruan Heru M Hutasoit Hotlan M. Nababan Hutabarat, Nauas Domu Marihot Romauli Hutauruk, Isra Ikhsan Sukri Iko M. Nadeak Ilmi Ilmi, Ilmi Joel P. Nababan Joel P. Nababan Jufrial Jufrizal Jufrizal Juwirianto Juwirianto Karina Nola Sinamo Kevin V Simbolon L, Zulkifli Lendeber Sinaga Libert Sijabat Libianko Sianturi M. Darwis Rambe M. Sabri M. Sabri M. Syahril Gultom M. Syahril Gultom M. Syahril Gultom M.Syahril Gultom Mahadi Mahadi Marhiras Sitanggang Masudie, Ahmad Michael Frans H. Hasibuan Muhammad Darwis Rambe Mulfi Hazwi Mulfi Hazwi Munawir Rosyadi Siregar N, Ricardo Napitupulu, Farel H. Napitupulu, Farrel H Nasution, Dian M. Nehemia Sembiring Nst, Fadly A. Kurniawan Nur, Taufiq Bin Nur, Taufiq Bin Oloan Purba P., Andianto Parulian Siagian Perangin-angin, Siwan E. Pramio G. S Pramio G. Sembiring Putra Setiawan Raidinata A. Sipayung Ricardo N Riky S. Situmorang Rio Arinedo Sembiring Ronal P Hutagalung Samar Sari Farah Dina Sari Farah Dina Sari Farah Dina Shandy Marpaung Siagian, Horas S Siahaan, Enzo W.B Sihombing , Hendrik Voice Sihombing, Hendrik V Sihombing, Hendrik V. Simanjuntak, Janter Pangaduan Simon S. T. Gultom Simon S.T Gultom Siregar, Achmad Husein Siti Farah Dina Sitorus, Tulus B. Suprianto . Syahril Gultom Syahril Gultom Syalimono S Tambunan , Bisrul Hapis Tampubolon, Andika PP Tarigan, Dicky Adrian Sera Taufiq B N Taufiq B. N Taufiq B. N. Taufiq B. N. Taufiq B. Nur Tekad Sitepu Tekad Sitepu Terang UHS Ginting Terang UHSG Tri Arfandi Tri Arfandi Tugiman Tugiman . Tulus B Sitorus Tulus B Sitorus Tulus B sitorus Tulus B. Sitorus Tulus B. Sitorus Tulus B. Sitorus Tulus B. Sitorus Tulus B. Sitorus Tulus B. Sitorus Tulus Burhanuddin Sitorus Tyson M Tyson M. Wahyu Hamdani Waldemar Naibaho William William . William Ryan Wijaya Yosua Maha Kurnia Surbakti Zakaria Bernando Zulkifli L Zulkifli Lubis Zulvia C.N Ginting