Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : JOIV : International Journal on Informatics Visualization

Incremental Learning Approaches for Dermoscopic Image Classification in Teledermatology Hernanda, Arta Kusuma; Asayanda, Fikra Agha Rabbani; Ait-Souar, Iliès; Rachmadi, Reza Fuad; Purnama, I Ketut Eddy
JOIV : International Journal on Informatics Visualization Vol 9, No 2 (2025)
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62527/joiv.9.2.3016

Abstract

This study investigates the application of incremental learning techniques to enhance the classification of skin diseases in dermoscopic images. The research aims to develop a model capable of continuous adaptation to new data while retaining previously acquired knowledge. Two datasets were utilized: acne images and the HAM10000 dataset comprising various skin lesions. The methodology involved initially training a ResNet-18 convolutional neural network on 1,052 samples across eight classes, followed by an incremental learning phase incorporating 800 additional data points. Rigorous preprocessing steps were implemented to ensure data quality, including cropping, resizing, and normalization. Results demonstrate that the base model achieved 87% accuracy on the test set, which improved to 90% after the incremental learning process. Detailed analysis revealed significant improvements in precision, recall, and F1-scores for several skin disease classes, notably for challenging categories such as Basal Cell Carcinoma (bcc) and Dermatofibroma (df). Confusion matrix analysis and Grad-CAM visualizations provided insights into the model's decision-making process and its focus on clinically relevant features. The study also implemented a Streamlit application to demonstrate real-time classification capabilities and the system's adaptability in a simulated clinical environment. These findings have potential clinical applications, particularly in teledermatology systems where adaptive algorithms can accommodate new dermatological data over time. The study highlights the potential of incremental learning in creating accurate, adaptable, and clinically relevant AI models for skin disease classification in evolving medical practices.
Co-Authors Abd Rahman Adhi Dharma Wibawa Adi Sutanto Ahmad Zaini Ahsan Ahsan Ait-Souar, Iliès Alamsyah Alamsyah - Andi Kurniawan Nugroho Arham Arham, Arham Arina Qona'ah Asayanda, Fikra Agha Rabbani Bernaridho Hutabarat, Bernaridho Boedinugroho, Hanny Budi Nur Iman Budi Santoso Catur Supriyanto Chastine Fatichah Dian Ratnawati Diana Purwitasari Dinar Mutiara Kusumo Nugraheni Effendy Hadi Sutanto Eka Dwi Nurcahya Eko Mulyanto Yuniarno Eko Mulyanto Yuniarno Elly Purwantini Endang Sri Rahayu Esther Irawati Setiawan Filiazsanti, Almira Firman Arifin Gijsbertus Jacob Verkerke Gijsbertus Jacob Verkerke Guruh Fajar Shidik Gusmaniarti, Gusmaniarti Handayeni, Ketut Dewi Martha Erli Hartarto Junaedi Hermawan, Norma Hernanda, Arta Kusuma Hidayat Arifin I Made Gede Sunarya Ida Hastuti Ima Kurniastuti Iman Fahruzi Ingrid Nurtanio Ismoyo Sunu Isturom Arif Jaya Pranata, Jaya Joko Priambodo Juanita, Safitri Khakim Ghozali Kristian, Yosi Kurniawan, Arief Lilik Anifah Lukman Affandhy Lukman Zaman Margareta Rinastiti Masy Ari Ulinuha Mauridhi Heri Purnomo Mauridhi Heri Purnomo Mauridhi Hery Purnomo Mauridhi Hery Purnomo Mira Candra Kirana Moch Hariadi Moch Hariadi Mochamad Hariadi Mochamad Yusuf Alsagaff Mochammad Hariadi Muhammad Anshari Muhammad Hariadi Muhammad Nur Alamsyah Muhtadin Muhtadin Muhtadin Mulyanto, Eko Munawir . Munawir Munawir Munir, M Syahrul Myrtati Dyah Artaria Nazarrudin, Ahmad Ricky Nofiandri Setyasmara Nursalam . Pramunanto, Eko Priambodo, Joko Prioko, Kentani Langgalih Pulung Nurtantio Andono Putu Gde Ariastita Putu Hendra Suputra R Dimas Adityo Rachmadi, Reza Fuad Raihan, Muhammad Reza Fuad Rachmadi Ricardus Anggi Pramunendar Rifky Octavia Pradipta Rika Rokhana Rika Rokhana Rima Tri Wahyuningrum Rima Tri Wahyuningrum Robby Aldriyanto Raffly Rokhana, Rika Rumala, Dewinda Julianensi Saiful Bukhori Saiful Bukhori Sensusiati, Anggraini Dwi Setijadi, Eko Slamet Hartono Stevanus Hardiristanto Stevanus Hardiristanto Stevanus Hardiristanto, Stevanus Sugiyanto - Supeno Mardi Susiki Nugroho, Supeno Mardi Suryo, Yoedo Ageng Terawan Agus Putranto Tita Karlita Tita Karlita Tita Karlita Tomoko Hasegawa Tri Arief Sardjono Wulandari, Ariani Dwi Yosi Kristian Yulis Setiya Dewi Zaimah Permatasari Zaman, Lukman