Claim Missing Document
Check
Articles

KAJIAN SIX SIGMA DALAM PENGENDALIAN KUALITAS PADA BAGIAN PENGECEKAN PRODUK DVD PLAYERS PT X Nailatis Shofia; Mustafid Mustafid; Sudarno Sudarno
Jurnal Gaussian Vol 4, No 1 (2015): Jurnal Gaussian
Publisher : Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (463.761 KB) | DOI: 10.14710/j.gauss.v4i1.8147

Abstract

Increasingly rapid development period, many industry sectors are growing and developing in Indonesia. Quality basic consumer decision factor in selecting goods and services. In the process of checking the audio end section 8 types of defects found on the product DVD players. Damage that occurs due to several factors, including factors human, material factors, and factors machines. If the quality of a company is said to have good production systems with process control. Six Sigma method is a method that can be used for analysis of the defect rate to approach zero defect products. The procedures used for quality improvement towards the target that the concept of Six Sigma DMAIC. This study aims to apply Six Sigma methods in quality control by conducting case studies to improve product quality DVD player at the end of the audio process. The results obtained in this study is on the whole production process mengkasilkan DPMO value of 5487 with sigma quality level of 4.04 means that the product of one million DVD players there are 5487 units of product that does not fit in production. Keywords : Quality, Statistical Quality Control, Six Sigma
PERBANDINGAN METODE RUNTUN WAKTU FUZZY-CHEN DAN FUZZY-MARKOV CHAIN UNTUK MERAMALKAN DATA INFLASI DI INDONESIA Lintang Afdianti Nurkhasanah; Suparti Suparti; Sudarno Sudarno
Jurnal Gaussian Vol 4, No 4 (2015): Jurnal Gaussian
Publisher : Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (449.112 KB) | DOI: 10.14710/j.gauss.v4i4.10227

Abstract

Inflation data are financial time series data which often violate assumption if it is modeled with ARIMA Box-Jenkins classic method. Therefore, to forecast inflation data are used forecast method which has not requirement classic assumptions, like as fuzzy time series method. Fuzzy time series is a method of predicting data that use principles of fuzzy as basis. Many researches has been developed about this method, such as fuzzy time series developed by Chen (1996) and fuzzy time series-Markov chain developed by Tsaur (2012). In this case, both methods are used to predict inflation data in Indonesia. Result of predicting from both methods are compared with MSE value to in sample data. Method of fuzzy time series-Chen get MSE value 0,656, whereas method of fuzzy time series-Markov chain get MSE value 0,216. Because of this reason, method of fuzzy time series-Markov chain get smallest MSE value. So, this method as the best method. Furthermore, to evaluate the best of predicting model used MAPE value to out sample data. The MAPE value in method of fuzzy time series-Markov chain is 6,610%. As conclusion, model of fuzzy time series Markov chain have best performance.Keywords : fuzzy time series, Markov chain , MSE, MAPE.
KAJIAN AVAILABILITAS PADA SISTEM KOMPONEN SERI Avida Nugraheni C.; Sudarno Sudarno; Triastuti Wuryandari
Jurnal Gaussian Vol 2, No 3 (2013): Jurnal Gaussian
Publisher : Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (424.788 KB) | DOI: 10.14710/j.gauss.v2i3.3664

Abstract

Availability is a measure of system performance and measures the combined effect of reliability, maintenance and logistic support on the operational effectiveness of the system. Availability of series system is derived from inherent availability of system that takes effect from mean time to failure (MTTF) and mean time to repair (MTTR). Given observed time data of microcontroller consists of processor core, memory and programmable I/O peripheral in series, is measured its system availability. By simple linier regression method, the parameter estimation is determined after data distribution known, for the mean time. Processor core has Weibull distribution for failure time data with ,   and  as regression model while repair time data is lognormal distribution with ,  and regression model is . Memory has exponential failure time data with  and  as regression model while normal repair time data has  dan  and regression model is . Failure time data distribution of programmable I/O peripherals is Weibull with ,   and regression model  while lognormal repair time data has ,  and regression model is . Due to MTTF is 11364.57 hours and MTTR is 41.59 hours, processor core’s availability is 99.64%. Availability of memory is 99.87% from MTTF is 20000 hours and MTTR is 27 hours. Programmable I/O peripheral has 18773.41 hours as MTTF and MTTR is 38.67 hours that deliver availability 99.79%. The series system availability is 99.30% means the probability of system is in the state of functioning at given time is 99.30%.
OPTIMASI VALUE AT RISK REKSA DANA MENGGUNAKAN METODE ROBUST EXPONENTIALLY WEIGHTED MOVING AVERAGE (ROBUST EWMA) DENGAN PROSEDUR VOLATILITY UPDATING HULL AND WHITE Khalida Hanum; Tarno Tarno; Sudarno Sudarno
Jurnal Gaussian Vol 6, No 3 (2017): Jurnal Gaussian
Publisher : Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (328.106 KB) | DOI: 10.14710/j.gauss.v6i3.19310

Abstract

Risk measurement is important in making investments. One tool to measure risk is Value at Risk (VaR), which is the worst possible loss on a given time horizon under normal market conditions with a certain confidence level. The successful implementation of VaR depends on conditional volatility estimates of portfolio returns. Robust Exponentially Weighted Moving Average (robust EWMA) is one approach in forecasting the conditional volatility of asset returns. Robust EWMA is suitable for financial data analysis which is heteroscedastic and not normally distributed. The final VaR is calculated using historical simulation method with updated data return through volatility updating Hull and White procedure. In this research, robust EWMA is used for portfolio VaR calculation with case study of mutual funds shares BNI AM Dana Berkembang (BNI), Manulife Dana Saham Utama (MDSU) and Mega Asset Greater Infrastructure (MAGI). Validity testing of VaR was conducted based on Basel rule and Kupiec's proportion of failures (PF) test. The result of backtesting test shows that the obtained VaR are valid to predict the loss of the equity fund portfolio at both 95% and 99% confidence level.Keywords : mutual fund, Value at Risk, robust EWMA, volatility updating
PEMISAHAN DESA/KELURAHAN DI KABUPATEN SEMARANG MENURUT STATUS DAERAH MENGGUNAKAN ANALISIS DISKRIMINAN KUADRATIK KLASIK DAN DISKRIMINAN KUADRATIK ROBUST Afianti Sonya Kurniasari; Diah Safitri; Sudarno Sudarno
Jurnal Gaussian Vol 3, No 1 (2014): Jurnal Gaussian
Publisher : Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (397.983 KB) | DOI: 10.14710/j.gauss.v3i1.4770

Abstract

Semarang Regency is one of 29 counties and 6 towns in Central Java province. In the district there are rural areas and urban areas. Discriminant analysis is a technique related to the separation of objects into different groups that have been set previously, thus, discriminant analysis can be used to separate village in Semarang Regency into urban or rural groups. Linear discriminant analysis assumes that the covariance matrix of the two groups are equal, If the assumption of equality covariance matrix is denied, function of quadratic discriminant can be used for classification. Classical estimation for the sample mean vector and sample covariance matrix is very sensitive to the presence of outliers in the observations and the functioning of the separation can be non-robust. Estimators that can be used to cope with data containing outliers are the Minimum Covariance Determinant. Robust discriminant analysis is obtained by replacing the mean and covariance matrix using the classic MCD estimator. After analysis is performed, obtained result the data of 2011 Village Potential contains outlier, so that the robust quadratic discriminant analysis more appropriate because it can provide precision the results of separation 89,79% while classical quadratic discriminant analysis give exactness of 87,23%.
APLIKASI FUZZY ANALYTICAL HIERARCHY PROCESS UNTUK MENENTUKAN PRIORITAS PELANGGAN BERKUNJUNG KE GALERI (Studi Kasus di Secondhand Semarang) Agung Santoso; Rita Rahmawati; Sudarno Sudarno
Jurnal Gaussian Vol 5, No 2 (2016): Jurnal Gaussian
Publisher : Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (676.596 KB) | DOI: 10.14710/j.gauss.v5i2.11846

Abstract

Entrepreneur have an important role in the development of developing countries. Entrepreneurship has many responsibilities, one of them is in making decisions concerning organizational leadership, marketing and others. Making the right decisions to support advancement a company. Analytic Hierarchy Process (AHP) is a decision support models to find the order of priority of the various alternatives in solving a problem. Weakness contained in the AHP is subjectivity. The approach to the fuzzy concept can minimize these weaknesses. The use of function Triangular Fuzzy Number (TFN) on Fuzzy AHP can clarify uncertainties in the interval assessment scale. This study aims to identifies the priority of customers visiting the gallery case study in Secondhand Semarang. The data taken by distributing questionnaires to customers have ever visiting as respondents. The results showed criteria of Barang is a top of priority with the highest priority weight is 0,341. Criteria of Produk followed with 0,245 priority weight, then criteria of Suasana with 0,211 priority weight, and the last criteria of Lingkungan with 0,201 priority weight.
ANALISIS HUBUNGAN FAKTOR FAKTOR YANG MEMPENGARUHI PREDIKAT PERUSAHAAN ASURANSI UMUM DI INDONESIA PERIODE DESEMBER 2013 – NOVEMBER 2014 Tri Retnaning Nur Amanah; Tatik Widiharih; Sudarno Sudarno
Jurnal Gaussian Vol 5, No 3 (2016): Jurnal Gaussian
Publisher : Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (817.46 KB) | DOI: 10.14710/j.gauss.v5i3.14713

Abstract

Human life often faces an uncertain situation and risks. In reducing uncertainty, human can protect themselves by choosing an insurance company. One that can be considered in the selection of protection is to observe the predicate of the insurance company. Predicate of general insurance company in Indonesia period December 2013 to November 2014, issued by the research institute Info bank categorized into 4 (four), there are very good, good, good enough and not good. Rating of predicate using factors commonly used to observe the financial performance. Those factors are the Risk Based Capital, the growth of gross premium income, the load (claims, efforts, and commissions) to net premium income, the net income (loss) before taxes compared to averages of equity, the net income (loss) comprehensive compared with the average of equity capital, the liquidity, sufficiency investments and current assets to total assets, the growth of their own capital, their own premium retention on their own capital, the underwriting results compared with net premium, the balance on investment with net premium income, investment of current assets to total assets. This study aims to determine the factors that are supposed to influence the predicate of insurance using ordinal logistic regression. Results of the analysis showed that the growth in gross premium income and load (claims, efforts, and commissions) to net premium income have significant effect (α = 5%) to predicate of insurance.Keywords: ordinal logistic, gross premium, the load to net premium, predicate of insurance.
PENGONTROLAN KUALITAS PRODUK MENGGUNAKAN METODE DIAGRAM KONTROL MULTIVARIAT np (Mnp) DALAM USAHA PENINGKATAN KUALITAS (Studi Kasus di PT Coca-Cola Amatil Indonesia (CCAI) Semarang) Nonik Brilliana Primastuti; Sudarno Sudarno; Suparti Suparti
Jurnal Gaussian Vol 3, No 1 (2014): Jurnal Gaussian
Publisher : Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (484.214 KB) | DOI: 10.14710/j.gauss.v3i1.4781

Abstract

The industrial revolution was mark the beginning of the rise of industrial in the world. Moreover, in this globalization era, a lot of industry popping up especially those industries in Indonesia with many of those industries would emerge also thight competition. Each company must be trying to superior to that of its products so that each company will always improve the quality of their products in various ways so that the product can deportment in the market. One way of improving the quality of by doing quality control on each of its products. There are many method of conducting control quality. One method used is multivariate np chart. Multivariate np chart usually used for nonconforming units. Based on the results of this research, it is found that the production process in phase I namely from January to February in a state of controlled so that the parameters in the production process phase I can be used in the production process phase II, while to the process of the production phase II there are several observations that are out-of-control so that the production phase II in a state of uncontrolled.
PERBANDINGAN ANALISIS FAKTOR KLASIK DAN ANALISIS FAKTOR ROBUST UNTUK DATA INFLASI KELOMPOK BAHAN MAKANAN DI JAWA TENGAH Erna Puspitasari; Moch. Abdul Mukid; Sudarno Sudarno
Jurnal Gaussian Vol 3, No 3 (2014): Jurnal Gaussian
Publisher : Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (467.852 KB) | DOI: 10.14710/j.gauss.v3i3.6445

Abstract

Factor analysis is a statistical method used to describe a set of variables based on common dimensions. Factor analysis that is often used is the classical factor analysis with principal components method. Classical factor analysis can not work properly if the data contained many outliers. In order factor analysis remains optimal in explaining a set of variables even in conditions of data containing many outliers, we need a robust estimator. Through factor analysis is expected to obtain robust high accuracy analysis results for data containing many outliers. Estimator fast-MCD is one of the robust estimator that aims to get the smallest determinant of the covariance matrix. Robust factor analysis with fast-MCD method in this thesis is applied to explain the many subgroups of food at food inflation rate in Central Java into a more modest dimensions. The total proportion of the data variance can be explained by factors that are formed through a robust method of factor analysis in foodstuffs inflation data in Central Java that is equal to 72.9 percent larger than the classical factor analysis method which generates at 53.5 percent. This suggests that a more robust factor analysis method is able to cope with food inflation data in Central Java group containing outliers of the classical factor analysis method.
PENENTUAN KOMPOSISI WAKTU OPTIMAL PRODUKSI DENGAN METODE TAGUCHI (Studi Kasus: Penelitan di Pabrik Kerupuk Rambak Stik Cap Ikan Bawang, Semarang) Angga Saputra Desti; Triastuti Wuryandari; Sudarno Sudarno
Jurnal Gaussian Vol 3, No 1 (2014): Jurnal Gaussian
Publisher : Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (495.387 KB) | DOI: 10.14710/j.gauss.v3i1.4771

Abstract

Many businesses crackers facing obstacles in meeting the market demand. Business doers must minimize time in the process so that market demand can be fulfilled. This study aims to minimize the time making process as well as getting the right optimal composition without damaging the quality of the product. Settlement problems using the Taguchi method in experimental design . Factor used is steaming (22 and 19 minutes), the first drying (7 and 6 hours), the second drying (10 and 9 hours) and frying (2 minutes 45 seconds and 2 minutes 30 seconds), as well as variables assessed from the experimental results in terms of taste, color and crunchiness with using organoleptic assessment by a not trained panelists. From the experimental results best factor level selected by SNR and the mean value in terms of taste, color and crunchiness. The composition of the optimal cracker manufacture process to produce the most preferred crackers elected steaming (19 minutes), the first drying (7 hours) , the second drying (9 hours) and frying (2 minutes 30 seconds). Optimal composition of the comparison results with the standard factory based T – test independent sampel the response of taste, color and crunchiness produce the same average, with the time difference for once the process is 310 minutes or 5 hours 10 minutes.
Co-Authors Abdul Hoyyi Achmad Tavip Junaedi Ade Lenty Hoya Adimulya Nurrahman Aditya Eka Laksana Adiwirman Adiwirman Afianti Sonya Kurniasari Agung Santoso Agus Sudrajat Ahmad Reza Aditya Ajeng Arum Sari Alan Prahutama Aldila Khairina Sissandhy Alfita Rakhmayani Amin Nursudi Aminuddin Aminuddin Anak Agung Istri Sri Wiadnyani Angga Saputra Desti Anik Waryanti Anissa Pangastuti Anya Amabell Syukuri Arifah Wulansari Ariffandita Nuri Muttaqin Ashri Febrina Rahmasari Atika Elsadining Tyas Avida Anugraheni Avida Nugraheni C. Ayu Ambarsari bagus aji Bambang Wasito Adi Bayu Ariawan Bayyina Zidni Falah Boedi Setya Rahardja Budi Warsito Chiarakania Chaniago Cut Nur Aisyah Darari Rahma Lalita Dedy Haryanto Despriyanti Despriyanti diah novitasari Diah Safitri Dian Ika Pratiwi Dita Oktavia Ningrum Dwi Ispriyansti Dwi Ispriyanti Dwi Safrudin Dwi Siwi Handayani Eka Triakuntini Endang Dewi Masithah Endro Sutrisno Erna Puspitasari evelyn wijaya Farid Abdu Salam Fathimatuzzahra Syahrozad Nuroqi Fatkhan Arissetya Febriane Paulina Makalew Feri Setyowibowo Fifi Puspita Fuad Muhammad Galih Maraseta W H Prasaja Galuh Ayu Prameshti Gusti Rusmayadi Harini Harini Hasbi Yasin Hasmuri Hasmuri Huriyah Huriyah Ibnu Athoillah Irawan Wisnu Wardhana Johan Adi Wicaksana Joko Purnomo Julidian Julidian Julius E. Tenda Junaidi Junaidi Khalida Hanum Khersna Bayu Sangka Khresna Bayu Sangka Kikis Dinar Yuliesti Kristiani Kristiani Kussigit Santosa Lintang Afdianti Nurkhasanah Lulut Fadhilah Lundu Bontor Sihite Luthfi Rachma Dita M. Husni Arifin Maidiah Dwi Naruri Saida Malik Hakam Maluw, Fandel Mamuroh Mamuroh Mardison Purba Mario Moningka Martha Ng Mintasih Indriayu Mintasih Indriayu Moch. Abdul Mukid Mohammad Al Hazmi Mohammad Rama Fadillah Soeroso Muhammad Amin Muhammad Fachri Maulana Mustafid Mustafid Nailatis Shofia Nany Yuliastuti Nesvi Intan Oktajayanti Nonik Brilliana Primastuti Nourma Yulia Nova Yanti Gultom Novi Melawati Nur Aeniatus Solekakh Nur Musrifah Rohmaningsih Pradana Sahid Akbar Pranata Anggakara Priska Rialita Hardani Putu Handoko Murti Putu Jaya Permana Qomaruddin, Mochammad Ramdhan Febrianto Rangkang, Jeanely Retza Bahtiar Anugrah Ridha Ramandhani Ririn Khoiriyah Rita Rahmawati Rizka Asri Brilliani Rizky Ade Putranto Rukun Santoso Rumbayan, Rilya S. Suripin Salman Alfarisy Totalia Sandy Kristiara Sarwanto Sarwanto Satrio Adi Wibowo Sekar Niken Kartika Sheny Nurul Aini Shofiyatul Afidah Sholikhah Septiarti Khusnul Wardatus SITI NURLATIFAH Slamet Effendy Yusuf Sudenroy Mentang Sugito Sugito Suhardjo Suhardjo Sukrismiati Sukrismiati Sulton Syafii Katijaya Sunarto Sunarto Suparti Suparti Supriyanto Supriyanto Sutrisno Anggoro Syanne Pangemanan Tampanatu P. F. Sompie Tarina Rahmayani Tarno Tarno Tatik Widiharih Taufan Fahmi Taufik Dani Testian Yushli Ana Tiani Wahyu Utami Titin Nurfiatin Tri Retnaning Nur Amanah Triastuti Wuryandari Veronika Ellyana Vica Nurani Wahyu Nugraha Widha Sunarno WINARTI WINARTI Winda Rosiana Pratiwi Wulan Merdeka Sari Yanuar Luqman Yovina Mulyadi Yuciana Wilandari