Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : Jurnal Matematika Sains dan Teknologi

PREDIKSI TOTAL HUJAN BULANAN DI TANJUNGPANDAN MENGGUNAKAN PERSAMAAN REGRESI DENGAN PREDIKTOR SST NINO 3.4 DAN INDIA OCEAN DIPOLE (IOD) Supriyadi, Slamet
Jurnal Matematika Sains dan Teknologi Vol 16 No 2 (2015)
Publisher : LPPM Universitas Terbuka

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Indonesia is a maritime continent region where the weather and climate of Indonesia are affected by various atmospheric dynamics both on a global scale regional scale, scale synoptic and local scale. Weather and climate in Indonesia is influenced by three areas of sea in particular with regard to the sea surface temperature anomaly that Indonesia sea surface temperature, sea surface temperature Nino 3.4 region (Central Pacific) and the Indian Ocean sea surface temperature. The method in this research is multiple linear regression method to predict the total monthly rainfall in Tanjungpandan with predictors Nino 3.4 and Dipole Mode Index, while the independent variable (dependent) is the total monthly rainfall. In general the predicted results by the predictor Nino 3.4 and Dipole Mode Index shows that the value is longer (over estimate) the value of observations. Validation results with the predictions of total monthly rainfall predictor Nino 3.4 and Dipole Mode Index produce a correlation coefficient values and good RMSE is r = 0,89 and RMSE = 81,04%. Indonesia merupakan kawasan benua maritim dimana cuaca dan iklim wilayah Indonesia dipengaruhi berbagai dinamika atmosfer baik dalam skala global, skala regional, skala sinoptik dan skala lokal. Cuaca dan iklim di Indonesia dipengaruhi oleh tiga wilayah lautan khususnya berkaitan dengan anomali suhu muka laut yaitu suhu muka laut Indonesia, Suhu muka laut wilayah Nino 3.4 (Pasifik Tengah) dan suhu muka laut Samudera Hindia. Metode yang digunakan dalam penelitian ini adalah metode regresi linier berganda untuk memprediksi total hujan bulanan di Tanjungpandan dengan prediktor Nino 3.4 dan Dipole Mode Index, sedangkan variable tidak bebasnya (dependent) adalah total hujan bulanan. Secara umum hasil prediksi dengan predictor Nino 3.4 dan Dipole Mode Index menunjukkan hasil yang lebih besar (over estimate) dari nilai observasinya. Hasil validasi prediksi total hujan bulanan dengan prediktor Nino 3.4 dan Dipole Mode Index menghasilkan nilai koefisien korelasi dan RMSE yang baik yaitu r = 0,89 dan RMSE = 81,04%.
Co-Authors - Mahsun Aan Burhanudin Abdul Gofur Achmad Amzeri Adiputra, Agung Agung Kristiawan Agus Imam Santoso Agus Mukhtar Agustina, Dwi Ulya Ainur Rafiq Amrullah Alfiani, Widya ali fauzi Aminuyati Anugrah, Nina Julia Anugrah, Nina Julia Arif Rakhman Suharso Ario Hendartono Bahtiar, Hafid Bakti Wisnu Widjajani Beti Dwi Purwati Burhanudin , Muhammad Arif Carsoni Catur Wasonowati Choirul Umam Choirul Umam Damayanti, Pramudhita Alfina Diah Kristina, Diah Dwi Kurnila Sari Edi Kurniadi Eko Murniyanto Eko Murniyanto EKO SETIAWAN Endang Widiyastuti Erick Yuhardi Erika, Siti Ernawati Saptaningrum Esterica Yunianti, Esterica Estu Saputro Fahmi Arief Rahman Fakhrudin, Anas FARANDI, ROY Fathoni, Mu`alim Ibu Gita Pawana Ibnu Toto Husodo, Ibnu Toto Imadudin Harjanto Irna Farikhah Ismail, Abd Rasid Joko Nurkamto Karmala, Estiana Tri Kurnia Widiastuti Kurniawati, Estetika Mutiaranisa Lailatin Nisfiyah Margana Margana Margono Margono Masrukhatin Na’imah Muhamad, Wan Mansor Wan Muhammad Amin Sadzli Muhammad Amiruddin Mulyanto Mulyanto Mulyawan, Ronny NISFIYAH, LAILATIN Nur Aksin, Nur Nur Arifah Drajati Nurlaila Mubarokah Pambudi, Nizar Anggriawan Prasetyo, Syukur Toha RAHMAT GUNAWAN RR. Ella Evrita Hestiandari Safitri, Ida Dwi Sembiring, Rinawati Sidqi Zaed Z.M Sidqi Zaed Z.M. Sigit Ristanto Sinar Suryawati Sinar Suryawati Siti Khairun Nisak Solly Aryza Sudiro Sudiro Suhartono, Suhartono Suheli Suheli, Suheli Sularti, Sularti Sumardi . Suparno Suparno Sutopo Sutopo Suyitno Suyitno Velma Nindita, Velma Wachid Yahya Wahyudiono, Teguh Wibawa, Bayu Arie Yuhardi, Erick Yulianto, Nanang Zunita, Vina Tasya