p-Index From 2021 - 2026
7.177
P-Index
This Author published in this journals
All Journal IAES International Journal of Artificial Intelligence (IJ-AI) International Journal of Advances in Applied Sciences Jurnal Presipitasi : Media Komunikasi dan Pengembangan Teknik Lingkungan Jurnal Kesehatan Lingkungan indonesia Media Statistika JURNAL SISTEM INFORMASI BISNIS Jurnal Gaussian Jurnal Statistika Universitas Muhammadiyah Semarang Jurnal Sains dan Teknologi Jurnal Simetris TELKOMNIKA (Telecommunication Computing Electronics and Control) Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI) Jurnal Ilmiah Kursor Jurnal Teknologi Informasi dan Ilmu Komputer Jurnal Transformatika JUITA : Jurnal Informatika WARTA Register: Jurnal Ilmiah Teknologi Sistem Informasi Journal of Information System E-Dimas: Jurnal Pengabdian kepada Masyarakat Sinkron : Jurnal dan Penelitian Teknik Informatika Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) International Journal of Artificial Intelligence Research Jurnal Informatika INTENSIF: Jurnal Ilmiah Penelitian dan Penerapan Teknologi Sistem Informasi Seminar Nasional Variansi (Venue Artikulasi-Riset, Inovasi, Resonansi-Teori, dan Aplikasi Statistika) Jurnal Sisfokom (Sistem Informasi dan Komputer) ILKOM Jurnal Ilmiah KOMPUTIKA - Jurnal Sistem Komputer JTP - Jurnal Teknologi Pendidikan Indonesian Journal of Community Services Journal of Applied Data Sciences Jurnal Riset Teknologi Pencegahan Pencemaran Industri Indonesian Journal of Librarianship Proceeding Biology Education Conference Media Pustakawan STATISTIKA Journal of Bioresources and Environmental Sciences Scientific Journal of Informatics
Claim Missing Document
Check
Articles

ANALISIS SENTIMEN GOJEK PADA MEDIA SOSIAL TWITTER DENGAN KLASIFIKASI SUPPORT VECTOR MACHINE (SVM) Nur Fitriyah; Budi Warsito; Di Asih I Maruddani
Jurnal Gaussian Vol 9, No 3 (2020): Jurnal Gaussian
Publisher : Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/j.gauss.v9i3.28932

Abstract

Appearance of PT Aplikasi Karya Anak Bangsa or as known as Gojek since 2015 give a convenience facility to people in Indonesia especially in daily activities. Sentiment analysis on Twitter social media can be the option to see how Gojek users respond to the services that have been provided. The response was classified into positive sentiment and negative sentiment using Support Vector Machine method with model evaluation 10-fold cross validation. The kernel used is the linear kernel and the RBF kernel. Data labeling can be done with manually and sentiment scoring. The test results showed that the RBF kernel gets overall accuracy and the highest kappa accuracy on manual data labeling and sentiment scoring. On manual data labeling, the overall accuracy is 79.19% and kappa accuracy is 16.52%. While the labeling of data with sentiment scoring obtained overall accuracy of 79.19% and kappa accuracy of 21%. The greater overall accuracy value and kappa accuracy obtained, the better performance of the classification model. Keywords: Gojek, Twitter, Support Vector Machine, overall accuracy, kappa accuracy
PENERAPAN METODE WAVELET NEURO-FUZZY SYSTEM (WNFS) DALAM MEMPREDIKSI HARGA BERAS DUNIA (Studi Kasus: Harga Beras Thailand sebagai Harga Acuan Dunia) Sri Endah Moelya Artha; Hasbi Yasin; Budi Warsito
Jurnal Gaussian Vol 6, No 4 (2017): Jurnal Gaussian
Publisher : Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/j.gauss.v6i4.30381

Abstract

Rice trade is one of the food resistance components in terms of its availability. The comprehensive integration between international commodity rice prices and domestic prices encourage the prediction of world rice prices, using the Thai rice price as the world's reference price. In this study, the wavelet neuro-fuzzy system which combines the wavelet transform and the neuro-fuzzy technique has been applied to monthly predict the world rice price. The observed monthly rice price data are decomposed into some sub-series components by maximal overlap discrete wavelet transform (MODWT), and then the appropriate sub-series that have higher correlation to the real data are used as inputs of the neuro-fuzzy model for monthly predicting world rice prices for six months in advance. The neuro-fuzzy model is begun with determining the membership value of each data using Fuzzy C-Means, followed by fuzzy inference procedure of the Sugeno zero-order model. Obtained results showed that the WNFS method can be used to predict the world rice price, with the error value resulted from learning process of MSE 20,69097 and MAPE 0,65584%. While the error measurement results for the six months in advance prediction shows the acquisition of MSE 3610,14847 and MAPE 13,62334%. Keywords : Prediction of Monthly World Rice Price, Maximal Overlap Discrete Wavelet Transform, Neuro-fuzzy System.
PENGARUH TRANSFORMASI DATA PADA METODE LEARNING VECTOR QUANTIZATION TERHADAP AKURASI KLASIFIKASI DIAGNOSIS PENYAKIT JANTUNG Arafa Rahman Aziz; Budi Warsito; Alan Prahutama
Jurnal Gaussian Vol 10, No 1 (2021): Jurnal Gaussian
Publisher : Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/j.gauss.v10i1.30933

Abstract

Learning Vector Quantization (LVQ) is a type of Artificial Neural Network with a supervised learning process based on competitive learning. Despite the absence of assumptions in LVQ is an advantage, it can be a problem when the predictor variables have big different ranges.This problems can be overcome by equalizing the range of all variables by data transformation so that all variables have relatively same effect. Heart Disease UCI dataset which used in this study is transformed by several transformation methods, such as minmax, decimal scaling, z-score, mean-MAD, sigmoid, and softmax. The result show that the six transformed data can provide better LVQ classification accuracy than the raw data which has 75.99% for training performance accuracy. LVQ classification accuracy with data transformation of minmax, decimal scaling, z-score, mean-MAD, sigmoid, and softmax are 89.16%, 88.22%, 89.7%, 90.1%, 88.17% and 92.18%. Based on the One-way ANOVA test and DMRT post hoc test  known that there are significant differences between the results of the classification with data transformations and raw data in 0,05 significant level of α. It is also known that the best data transformation methods are softmax for training and sigmoid for testing. Keywords: heart disease, neural network, learning vector quantization, classification, data transformation
Pengelolaan Data Persampahan pada Bank Sampah Sempulur Asri Gedawang Budi Warsito; Tarno Tarno; Suparti Suparti; Sugito Sugito; Sri Sumiyati
E-Dimas: Jurnal Pengabdian kepada Masyarakat Vol 9, No 2 (2018): E-DIMAS
Publisher : Universitas PGRI Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26877/e-dimas.v9i2.1503

Abstract

Bank sampah adalah suatu sistem pengelolaan sampah kering secara kolektif yang mendorong masyarakat untuk berperan serta aktif di dalamnya. Sistem ini akan menampung, memilah, dan menyalurkan sampah bernilai ekonomi sehingga masyarakat mendapat keuntungan ekonomi dari menabung sampah. Keberadaan bank sampah mempunyai arti penting baik dari sisi lingkungan maupun ekonomi. Pada Bank Sampah Sempulur Asri pengelolaan dan pencatatan data yang dilakukan masih sangat sederhana karena keterbatasan kemampuan dari pengelola maupun masih kurangnya kesadaran akan pentingnya pencatatan data persampahan. Oleh karena itu diperlukan suatu kegiatan yang dapat meningkatkan kesadaran dan kemampuan mencatat data persampahan bagi pengelola bank sampah Sempulur Asri. Kegiatan yang dilakukan meliputi pendampingan menabung serta pelatihan terhadap pengurus bank sampah dan perwakilan warga tentang pengelolaan data persampahan pada suatu bank sampah. Tim pengabdian membuatkan buku tabungan yang memuat volume sampah yang ditabung serta nominal harga yang ditetapkan sesuai jenis dan harga sampah. Setelah dilakukan pendampingan dan pelatihan, administrasi menjadi lebih rapi dan telah sesuai dengan aturan standar pada bank sampah.
IMPLEMENTASI PROGRAM KAMPUNG IKLIM DI KOTA SURAKARTA Atur Ekharisma Dewi; Maryono Maryono; Budi Warsito
Proceeding Biology Education Conference: Biology, Science, Enviromental, and Learning Vol 16, No 1 (2019): Proceeding Biology Education Conference
Publisher : Universitas Sebelas Maret

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Climate Change is one of the global issues of concern and included in the purpose of the SDGs (Action on climate change). This Research aims to know the potential achievement of the sustainability of Climate Village program in Surakarta. This Research is a literature study and observations in the field and questionnaire, interview. This research is taking location at Kampung Iklim Sekip Kadipiro, Sambirejo Kadipiro, Ngemplak Sutan Mojosongo. Kadipiro geographically, most of the region is a fairly large plateau. Kampung Iklim Sekip Kadipiro once received an award at the national level representing Surakarta municipal. Mojosongo Village is the widest urban village in Surakarta City with 5,329 Regional Areas 5,329 (Km2). Physical Condition of Topographic Village of Ngemplak Sutan Village in Mojosongo Sub-District, Jebres Sub-District is located north of Surakarta City, is a hilly area and is the highest plateau in the city of Surakarta. Based on the Geological Map of the Geohidrology Map of Surakarta, it can be seen that the northern rocks of the Mojosongo Village Office are up to Kali Kebo.Indonesia is one of the contributing countries in reducing GHG emissions by creating Program Kampung Iklim (PROKLIM) which is an environmental management activity based on community empowerment . Program Kampung Iklim is one of the efforts to adapt and mitigate climate change by citizens with friendly and environmentally sound activities. Climate Village activities provide additional income for citizens, where planting crops increases food security and reduces household spending. Waste management with 3R concept by Bank Sampah and innovative products produced by residents are able to increase additional income Kampung Iklim program has a local wisdom despite being in urban areas while maximizing the land of the House of page to plant, livestock and produce innovative local food and crafts products. The results of sustainability research are influenced by local figures, women and community roles.Implementation Kampung Iklim in Surakarta municipal has the potential for sustainability.
ANALYSIS OF THE NUMBER INFANT AND MATERNAL MORTALITY IN CENTRAL JAVA INDONESIA USING SPATIAL-POISSON REGRESSION Alan Prahutama; Budi Warsito; Moch. Abdul Mukid
MEDIA STATISTIKA Vol 11, No 2 (2018): Media Statistika
Publisher : Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (322.832 KB) | DOI: 10.14710/medstat.11.2.135-145

Abstract

Maternal and infant mortality are one of the most dangerous problems of the community since it can profoundly affect the number and composition of the population. Currently, the government has been taking heed on the attempt of reducing the number of maternal and newborn mortality in Central Java which requires data and information entirely. Poisson regression is a nonlinear regression that is often used to model the relationship between response variables in the form of discrete data with predictor variables in the form of discrete or continuous data. In space analysis, GWPR is one of method in space modeling which can model regional-based regression. It is based on some factors including the number of health facilities, the number of medical personnel, the percentage of deliveries performed with non-medical assistance; the average age of a woman's first marriage; the average education level of married women; average amount of per capita household expenditure; percentage of village status; the average rate of exclusive breastfeeding; percentage of households that have clean water and the percentage of poor people. Based on the analysis, it is revealed that the determinants of maternal and infant mortality in Central Java using Poisson and GWPR models, among others are the number of health facilities, the number of medical personnel, the average number of per capita household expenditure and the percentage of the poor. In the maternal and infant mortality model, the AIC value of GWPR model produces better modeling than Poisson regression. Keywords: Maternal and Infant mortality, Poisson, GWPR
PREDIKSI CURAH HUJAN EKSTREM DI KOTA SEMARANG MENGGUNAKAN SPATIAL EXTREME VALUE DENGAN PENDEKATAN MAX STABLE PROCESS (MSP) Hasbi Yasin; Budi Warsito; Arief Rachman Hakim
MEDIA STATISTIKA Vol 12, No 1 (2019): Media Statistika
Publisher : Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (639.776 KB) | DOI: 10.14710/medstat.12.1.39-49

Abstract

This research covers Spatial Extreme Value method application with Max-Stable Process (MSP) approach that will be used to analysis Extreme Rainfall in Semarang city. Extreme value sample are selected by Block Maxima methods, it will be estimated into Spatial Extreme Value form by including location factors. Then it transform to Frechet distribution because it has a heavy tail pattern. Max Stable Process (MSP) is an extension of the multivariate extreme value distribution into infinite dimension of the Extreme Value Theory. After the best model of extreme rainfall data in Semarang is obtained, then calculated the prediction of extreme rainfall with a certain time period. Predictions are calculated using a return level, predictions of extreme rainfall using the return period of the next two years, at the Semarang City Climatology Station predicted to be a maximum of 100.7539 mm. At the Tanjung Mas Rain Monitoring Station it is predicted that a maximum of 100.1052 mm, Ahmad Yani Rain Monitoring Station is predicted to be a maximum of 109.9379 mm. Maximum prediction of extreme rainfall can also be calculated for future t (time) periods.
IMPLEMENTASI K-MEDOIDS DAN MODEL WEIGHTED-LENGTH RECENCY FREQUENCY MONETARY (W-LRFM) UNTUK SEGMENTASI PELANGGAN DILENGKAPI GUI R Ta’fif Lukman Afandi; Budi Warsito; Rukun Santoso
Jurnal Gaussian Vol 11, No 3 (2022): Jurnal Gaussian
Publisher : Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/j.gauss.11.3.429-438

Abstract

The k-medoids algorithm is a partition-based clustering algorithm that groups n objects as much as k clusters. The algorithm uses medoids as the center point (partition) of the cluster. Medoids are actual objects that are randomly selected as the most centered object in a cluster so that the k-medoids algorithm is robust against outliers. Grouping objects in cluster analysis based on similarities between objects. Measurement of similarity between objects can use the euclidean and manhattan distances. The use of distance in cluster analysis can affect cluster results. Validation of cluster results using internal validation, namely the silhouette index. The Weighted-Length Recency Frequency Monetary (W-LRFM) model is a model that applies the relative importance (weight) of the LRFM model according to the importance of each variable in the LRFM model. LRFM model is a model used for customer segmentation based on customer behavior which consists of variables length, recency, frequency, and monetary. The relative importance (weight) of the W-LFRM model uses the Analytics Hierarchical Process (AHP) method. The W-LRFM model is used to calculate the Customer Lifetime Value (CLV) of each cluster. The implementation of k-medoids and the W-LFRM model in this study are used for customer segmentation based on the length, recency frequency, and monetary variable. The formation of these variables is the result of transformation of customer behavior data such as transaction id, date of purchase, and a total amount of 41,073 rows into variable length, recency, frequency, and monetary as much as 5,108 rows. The criteria of the best cluster formed are k = 2 using the manhattan distance with the average of coefficient values = 0.62. The weights on the W-LRFM model produced based on the AHP method are 0.16, 0.29, 0.47, and 0.08 for the variable length, recency, frequency, and monetary. CLV formed from two clusters, namely 0.158 and 0.499. CLV in the second cluster is bigger so that the second cluster becomes the main priority in the marketing strategy. The second cluster has the characteristics 0.29, 0.47, and 0.08 for the variable length, recency, frequency, and monetary. The second cluster has the characteristics  means a loyal customer group. The first cluster has characteristics  means a potential customer group. This research is assisted by using Graphical User Interface (GUI) R to facilitate analysis
Sistem Informasi Manajemen Pengumpulan dan Pengangkutan Sampah Padat dengan Efisiensi Rute Menggunakan K-Means Clustering dan Travelling Salesman Problem Munji Hanafi; Budi Warsito; Rahmat Gernowo
JSINBIS (Jurnal Sistem Informasi Bisnis) Vol 12, No 2 (2022): Volume 12 Nomor 2 Tahun 2022
Publisher : Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21456/vol12iss2pp106-115

Abstract

The increasing population growth and rapid urbanization have resulted in large amounts of solid municipal waste (SMW). Nowadays, the problem of waste management is a problem that is being experienced by every country in the world. As a result, implementing efficient waste management strategies is increasingly needed. The collection and transportation of solid waste is the most important thing to pay attention to in waste management efficiency to reduce the costs of collecting and transporting solid waste. The research started by collecting data and interviewing the environmental services of Semarang City about the waste transportation system in Semarang City. The results of the data and interviews will then be used as a reference for the system analysis to be made. Then proceed with designing information systems. After that, the information system was developed by applying the Traveling Salesman Problem (TSP) method using a heuristic in the form of K-means Clustering. With the help of OR-Tools, TSP completion does not require node distance, just inputting the coordinates of each node. The study closed system testing. This research proposes a new approach to solving TSP. First is the process of assembling nodes into several clusters. Then, look for the shortest route in each cluster. The research resulted in 21 routes in 16 corridors to transport waste in Semarang City, presented on a map on a web-based Information System as Decision Support System (DSS). The comparison of the methods shows that TSP is the most suitable for this case.
ANALISIS SUPPORT VECTOR REGRESSION (SVR) DENGAN ALGORITMA GRID SEARCH TIME SERIES CROSS VALIDATION UNTUK PREDIKSI JUMLAH KASUS TERKONFIRMASI COVID-19 DI INDONESIA Anindita Nur Safira; Budi Warsito; Agus Rusgiyono
Jurnal Gaussian Vol 11, No 4 (2022): Jurnal Gaussian
Publisher : Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/j.gauss.11.4.512-521

Abstract

Coronavirus Disease 2019 or Covid-19 is a group of types of viruses that interfere with the respiratory tract associated with the seafood market that emerged in Wuhan City, Hubei Province, China at the end of 2019. The first confirmed cases of Covid-19 in Indonesia on March 2, 2020, were 2 cases and until the end of 2021, it continues to grow every day. The purpose of this study was to predict the number of confirmed cases of Covid-19 in Indonesia using the Support Vector Regression (SVR) method with linear kernel functions, radial basis functions (RBF), and polynomials. Support Vector Regression (SVR) is the application of a support vector machine (SVM) in regression cases that aims to find the dividing line in the form of the best regression function. The advantage of the SVR model is can be used on time series data, data that are not normally distributed and data that is not linear. Parameter selection for each kernel used a grid search algorithm combined with time series cross validation. The criteria used to measure the goodness of the model are MSE (Mean Square Error), MAPE (Mean Absolute Percentage Error) and R2 (Coefficient of Determination). The results of this study indicate that the best model is Support Vector Regression (SVR) with a polynomial kernel and the parameters used include Cost = 1, degree = 1, and coefficient = 0.1. The polynomial kernel SVR model produces a MAPE value of 0.4946215%, which means the model has very good predictive ability. The prediction accuracy obtained with an R2 value of 85.65011% and an MSE value of 161606.1.
Co-Authors . Widayat Abdul Hoyyi Adi Waridi Basyirudin Arifin Adi Wibowo Adi Wibowo Agus Rusgiyono Agus Winarno, Agus Ahmad Lubis Ghozali Ahmed, Kamil Alan Prahutama Anindita Nur Safira Arafa Rahman Aziz Arbella Maharani Putri Arief Rachman Hakim Arief Rachman Hakim Arief Rachman Hakim Aris Sugiharto Arsyil Hendra Saputra Atmaja, Dinul Darma Atur Ekharisma Dewi Aurum Anisa Salsabela Bagus Dwi Saputra Bayastura, Shahnilna Fitrasha Bayu Surarso Bimastyaji Surya Ramadhan Budiyono Budiyono Calvin, Esagu John Catur Edi Widodo Chrisna Suhendi Cintika Oktavia Di Asih I Maruddani Di Mokhammad Hakim Ilmawan Dian Mariana L Manullang Dinar Mutiara Kusumo Nugraheni Dwi Ispriyanti Dyna Marisa Khairina eka rahmawati Ekky Rosita Singgih Wigati Endang Fatmawati Endang Fatmawati Fachry Abda El Rahman Faisal Fikri Utama Faliha Muthmainah Fath Ezzati Kavabilla Fatiya Nur Umma Ferry Hermawan Fiqria Devi Ariyani Firdonsyah, Arizona Gayuh Kresnawati Gertrude, Akello Ghifar Rahman Handayani, Sri Hanif Kusumasasmita Haritsa, Rifda Tsaqifarani Harjum Muharam Hasbi Yasin Hendri Setyawan Henny Widayanti, Henny Heriyanto Hizkia Christian Putra Setiadi Indra Jaya Infan Nur Kharismawan Intan Monica Hanmastiana Jafron Wasiq Hidayat Junta Zeniarja Kadarrisman, Vincensius Gunawan Slamet Kiswanto Kiswanto M. Afif Amirillah M. Andang Novianta Maharani, Chintya Ayu Mahrus Ali Maori, Nadia Annisa Maryono Maryono Maryono Maryono Masruroh, Fitriana Maulida Najwa, Maulida Mifta Ardianti Moch. Abdul Mukid Mochamad Arief Budihardjo Moh Ali Fikri mohamad jamil muhammad shodiq Muliyadi Muliyadi Munji Hanafi Mustafid Mustafid Mustaqim Mustaqim, Mustaqim Nisa Afida Izati Noor Azizah Nur Fitriyah Nurcahyanti, Tri Meida Nurul Hidayati Oktavia, Cintika Oky Dwi Nurhayati Pandu Anggara Paul, Gudoyi M Perdana, Ery Purwanto Purwanto Puspita Kartikasari Putri, Nitami Lestari R Rizal Isnanto R. Rizal Isnanto Rachmat Gernowo Rachmat Gernowo Rahmat Gernowo Rahmatul Akbar Ratna Kencana Putri Rini Nuraini Rita Rahmawati Rita Rahmawati Riva Amrulloh Riza Rizqi Robbi Arisandi Royani, Noorhanida Rukun Santoso Rully Rahadian Safitri, Adila Salma Farah Aliyah Sang Nur Cahya Widiutama Sari, Juwita Dwinda Silvia Elsa Suryana Siti Fadhilla Femadiyanti Sri Endah Moelya Artha Sri Sumiyati Sudarno Sudarno Sudarno Sudarno Sudarno utomo Sugito Sugito Sulardjaka Sulardjaka Suparti Suparti Syafrudin Syafrudin Tarno Tarno Tarno Tarno Tatik Widiharih Tatik Widiharih Ta’fif Lukman Afandi Tri Yani Elisabeth Nababan Ummayah, Putri Qodar Vincensius Gunawan Slamet Kadarrisman Wahyul Amien Syafei Whisnumurti Adhiwibowo Wibowo, Catur Edi Widiyatmoko, Carolus Borromeus Winahyu Handayani Yanuar Yoga Prasetyawan Yundari, Yundari