Claim Missing Document
Check
Articles

Found 29 Documents
Search

Isu Penyelarasan Flight Information Region di atas Wilayah Natuna Supriyadi, Asep Adang; Manessa, Masita Dwi Mandini; Gultom, Rudy Agus Gemilang
JURNAL MANAJEMEN TRANSPORTASI & LOGISTIK Vol 5, No 3 (2018): NOVEMBER
Publisher : Sekolah Tinggi Manajemen Transportasi (STMT) Trisakti

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25292/j.mtl.v5i3.273

Abstract

Citizen sentiment is essential to evaluate the support toward government program. In 2015, Indonesian government proposed an acceleration program on re-alignment on Flight Information Region above Natuna area. Since then, primary of discussion is often be held as a formal or informal event. The data collected from 210 respondent, which consist of pilots, military staff, ATC staff, and academician. Furthermore, this study uses TF-IDW weighting technique to cluster the argument as positive, neutral, and negative sentiment. The result shows that most of Indonesia aviation community (75%) argue that FIR management should base on sovereignty and safety. Moreover, FIR issue under economic, national security and management shows significant positive respond (>90%) while FIR management under Singapore shows a negative response (100%). The result indicates that the aviation community supports the national program Natuna FIR re-alignment.
SPATIAL DISTRIBUTION PATTERNS ANALYSIS OF HOTSPOT IN CENTRAL KALIMANTAN USING FIMRS MODIS DATA Pratamasari, Adisty; Permatasari, Ni Ketut Feny; Pramudiyasari, Tia; Manessa, Masita Dwi Mandini; Supriatna, Supriatna
Jurnal Geografi Lingkungan Tropik (Journal of Geography of Tropical Environments) Vol. 4, No. 1
Publisher : UI Scholars Hub

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

One of the ways to observe the hotspot created by forest fires in Indonesia is through Remote sensing imagery, such as MODIS, NOAA AVHRR, etc. Central Kalimantan is one of the areas in Indonesia with the highest hotspot data. In this research, MODIS FIRMS hotspot data in Central Kalimantan collected from 2017 – 2019, covering 13 districts: South Barito, East Barito, North Barito, Mount Mas, Kapuas, Katingan, Palangkaraya City, West Kotawaringin, East Kotawaringin, Lamandau, Murung Raya, Pulang Pisau, Seruyan, and Sukamara. That is four aspects that this research evaluated: 1) evaluating the spatial pattern using the Nearest Neighbor Analysis (NNA); 2) evaluate the hotspot density appearance using Kernel Density; and 3) correlation analysis between rainfall data and MODIS FIRMS. As a result, the hotspot in Central Kalimantan shows a clustered pattern. While the natural breaks KDE algorithm shows the most relevant result to represent the hotspot distribution. Finally, the hotspot is low correlated with rainfall; however, is see that most of the hotspot (~90%) appeared in low rainfall month (less than 3000 mm/month).
ANALISIS PERKEMBANGAN LAHAN TERBANGUN BERDASARKAN METODE SUPERVISED CLASSIFICATION MENGGUNAKAN GOOGLE EARTH ENGINE (STUDI KASUS: DESA CIPUTI, KECAMATAN PACET, KAB.CIANJUR) Prabandari, Amanah Anggun; Manessa, Masita Dwi Mandini
Jurnal Tanah dan Sumberdaya Lahan Vol. 11 No. 2 (2024)
Publisher : Departemen Tanah, Fakultas Pertanian, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21776/ub.jtsl.2024.011.2.11

Abstract

Monitoring the development of built-up areas can be done by observing remote sensing time series data such as Satellite Imagery. Google Earth Engine (GEE) makes it easy for users to access satellite image data, data processing and data analysis. GEE provides various machine learning algorithms to extract land cover data. This research aims to analyze the development of built-up areas using time series of remote sensing data, namely Sentinel 2A images recorded in 2019 and 2023 and comparing Random Forest (RF), Classification and Regression Tree (CART), Support Vector Machine (SVM) and Gradient Tree Boost (GTB) algorithms and predicts built-up areas in 2027. Based on the results of this research, RF is the algorithm with the highest accuracy in mapping land cover in Ciputri Village with an Overall Accuracy (OA) of 92% and a Kappa Coefficent (KC) of 0.89 in both the 2019 and 2023 classification results, while the lowest accuracy is the SVM algorithm. A comparison of the built-up land area between the 2019 and 2023 classification results shows a decrease in the built-up land area of 3.08 ha. Meanwhile, the prediction results for 2027 show an increase in built-up areas to 114.72 ha.
Multitemporal Analysis of Seagrass Dynamics on Derawan Island (2003–2021) Using Remote Sensing Techniques Fadhlurahman, Yusuf Nauval; Manessa, Masita Dwi Mandini; Semedi, Jarot Mulyo; Efriana, Anisya Feby; Haidar, Muhammad
ILMU KELAUTAN: Indonesian Journal of Marine Sciences Vol 29, No 1 (2024): Ilmu Kelautan
Publisher : Marine Science Department Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ik.ijms.29.1.1-14

Abstract

The shallow waters around Derawan Island are renowned for their beauty, attracting a significant number of tourists. Since the 2008 National Sports Week (PON) in East Kalimantan, the construction of inns and jetties has enhanced both accommodation and accessibility on the island. However, this development has also impacted the seagrass beds in the surrounding shallow waters. This study examines the changes in the area and density of seagrass beds from 2003 (prior to the PON activities) through to 2011 (a few years post-PON) and in 2021 (the most recent conditions), assessing the effects of lodging and jetty construction on these beds. Data were collected via field surveys using the photo transect method, and the benthic habitat map was created using Landsat 8 OLI Imagery, applying the Lyzenga water column correction algorithm and unsupervised classification method. The Normalized Difference Building Index (NDBI) algorithm and land digitization were utilized to track the development of the inns and jetties, revealing a rapid, widespread increase in construction throughout the island's southern region (R-square = 0.59). The study findings indicate a significant degradation of seagrass meadows between 2003 and 2021, particularly near populated areas on the southern coast, resulting in decreased density levels.
Inherent Optical Properties Attenuation Coefficient Modelling for Optical Shallow Water in Kepulauan Seribu of Jakarta, Indonesia Setiawan, Kuncoro Teguh; Rosid, Mohammad Syamsu; Manessa, Masita Dwi Mandini; Suardana, A.A. Md. Ananda Putra; Adi, Novi Susetyo; Winarso, Gathot; Osawa, Takahiro; Asriningrum, Wikanti; Supardjo, Harsono
ILMU KELAUTAN: Indonesian Journal of Marine Sciences Vol 29, No 2 (2024): Ilmu Kelautan
Publisher : Marine Science Department Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ik.ijms.29.2.222-232

Abstract

Technology to obtain bathymetric information has become necessary considering the length of the coastline and the many islands owned by Indonesia. Measurement technology using multi-beam and single-beam echo sounders is still an alternative to producing bathymetric information. In shallow water, using echo sounders has constraints and limitations, such as being time-consuming, costly and prone to equipment damage. Remote sensing technology is an alternative to obtaining bathymetric information in shallow waters. Bathymetric modelling with analytical and semi-analytic models from satellites requires attenuation coefficients. Therefore, attenuation coefficient models are essential for satellite data. Attenuation coefficient studies using inherent optical properties (IOP) parameters have not yet been studied to determine Kepulauan Seribu bathymetry, Jakarta, Indonesia. The IOP modelling is determined by absorption and backscatter parameters. Chlorophyll-a Total influences these parameters: Total Suspended Matter (TSM) and Coloured Dissolved Organic Matter (CDOM). This study was performed to determine the attenuation coefficient model using multispectral remote sensing in the Kepulauan Seribu and applied five approaches to determining the attenuation coefficient via IOP: the Gordon, Kirk, Morel, Lee and Simon models. The five models' IOP attenuation coefficient results were compared to the in-situ attenuation coefficient value and evaluated. The results of IOP attenuation coefficient modeling of multispectral remote sensing based on the condition of local water parameters is Kd(λ) = 1.4369 ((a(λ) + b(λ)) / Cos θ) + 0.072. based on the modified Gordon method, The modelling results were obtained with an accuracy of 0.98 determination coefficient (R2) and 0.029 Root Mean Square Error (RMSE).
KAJIAN KUALITAS AIR DI PERAIRAN DESA SUMBERKIMA DAN DESA PEMUTERAN, KECAMATAN GEROKGAK, KABUPATEN BULELENG, PROVINSI BALI Logan, Axel Gilbert; Manessa, Masita Dwi Mandini; Dimyati, Muhammad; Efriana, Anisya Feby; Haidar, Muhammad
ECOTROPHIC : Jurnal Ilmu Lingkungan (Journal of Environmental Science) Vol 17 No 2 (2023)
Publisher : Master Program of Environmental Science, Postgraduate Program of Udayana University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24843/EJES.2023.v17.i02.p04

Abstract

Water quality has a significant impact on aquaculture productivity. Water quality characteristics influence fishing production. This study employs numerous prior research techniques to assess air quality factors such as Total Suspend Solid (TSS), salinity, Sea Surface Temperature (SST), and dissolved oxygen. However, physical elements such as rainfall, which are separated into wet and dry months in this study, have an impact on water quality. The approach was developed using Landsat-8 OLI satellite images. The algorithm's output is validated for data accuracy using Pearson correlation, root mean square error (RMSE), and R-square. The findings suggest that the distribution of water quality in dry and rainy months is low in coastal areas and high in locations adjacent to open waters. Furthermore, it was discovered that the average value of the distribution of TSS in dry months was lower than in wet months, the mean value of the distribution of salinity in dry months was higher than in wet months, the average value of the SST distribution in dry months was higher than in wet months, and the mean value of the dissolved oxygen distribution in dry months was lower than in wet months. Keywords: Water suitability; Landsat-8; Water Quality; Remote Sensing
A study on spatio-temporal trend of rubber leaf fall phenomenon using planetscope multi-index vegetation imagery in relations to climatological conditions Sopian, Nadya Ata Meiviana; Supriatna; Manessa, Masita Dwi Mandini; Shidiq, Iqbal Putut Ash; Nagasawa, Ryota; Haidar, Muhammad
Environmental and Materials Vol. 2 No. 1: (June) 2024
Publisher : Institute for Advanced Science, Social, and Sustainable Future

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.61511/eam.v2i1.2024.906

Abstract

Background: Rubber plants are one of the most important plantation commodities in Indonesia. However, rubber production has declined due to leaf fall disease caused by the pathogen Pestalotiopsis sp. This study aims to analyze the spatial and temporal distribution of rubber plant leaf fall disease using multi-vegetation indices from PlanetScope imagery, as well as to analyze the influence of climatological conditions on the disease. Methods: The research was conducted at the Sembawa Rubber Research Center Garden, South Sumatra, using PlanetScope imagery data and climatological data in 2017 (before leaf fall) and 2023 (after leaf fall). Finding: Spatially, the 2023 leaf fall occurred in almost the entire garden area with poor to moderate levels. Blocks 2013D, 2012F, and 2009F experienced the most severe levels, with a total defoliated area reaching 396.76 ha. Analysis of monthly variations in vegetation index values revealed a decrease in values during leaf fall due to Pestalotiopsis sp., specifically in February, May, and September 2023. Statistical test results showed significant differences in vegetation index values between 2017 and 2023. Furthermore, based on Spearman's correlation analysis, there was a positive correlation between vegetation index values and humidity, but no significant correlation with rainfall and temperature. Conclusion: This research provides insights into mapping and monitoring rubber leaf fall disease using remote sensing data and climatological factors, which can be used for more effective rubber plantation management. However, the study has some limitations: monthly Planet data for 2017 is not fully available, several Planet image scenes from 2017 still have more than 50% cloud cover, and there may be biases as plants falling into the low health class are included in the high range of vegetation index values. Novelty/Originality of this Study: By integrating spatial and temporal analyses with climatological data, the research provides a precise and comprehensive method for monitoring LFD and understanding its environmental determinants, thereby enhancing traditional rubber plantation management practices.
Analisis Spasial Rute Evakuasi Bencana di Desa Ciputri, Kecamatan Pacet, Kabupaten Cianjur, Provinsi Jawa Barat Sunandar, Priyo; Manessa, Masita Dwi Mandini; Setiadi, Hafid
Jurnal Geografi, Edukasi dan Lingkungan (JGEL) Vol. 8 No. 2 (2024): Edisi Bulan Juli
Publisher : Pendidikan Geografi Universitas Muhammadiyah Prof. Dr. Hamka

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22236/jgel.v8i2.13815

Abstract

Desa Ciputri di Kecamatan Pacet, Kabupaten Cianjur, telah diakui sebagai desa wisata oleh Kementerian Pariwisata dan Ekonomi Kreatif. Pembentukan desa wisata ini bertujuan untuk memberdayakan masyarakat, memposisikan mereka sebagai pelaku langsung dalam pengembangan pariwisata lokal. Desa ini juga menghadapi potensi bencana, yang membutuhkan upaya mitigasi untuk mengurangi risiko. Penelitian ini fokus pada perancangan peta evakuasi menggunakan metode algoritma dijkstra sebagai solusi untuk menentukan rute evakuasi tercepat. Penentuan rute tercepat untuk evakuasi diperlukan untuk meminimalisir risiko saat terjadi bencana. Informasi spasial mengenai jarak rute dan waktu tempuh rute merupakan hal yang digunakan dalam menganalisis pencarian rute tercepat menuju tempat pengungsian. Pembangunan data spasial yang baik dengan mengambil data primer dari lapangan dapat meningkatkan akurasi dari perhitungan rute evakuasi. Analisis rute dengan menggunakan sistem informasi geografis digunakan dengan mengadopsi algoritma dijkstra modified yang terdapat pada ekstensi network analyst ArcMap 10.8. Diharapkan peta evakuasi ini dapat membimbing pengunjung dan warga saat terjadi bencana, meningkatkan kesadaran akan jalur yang aman dan titik evakuasi yang telah ditentukan. Model simulasi akan dievaluasi untuk memastikan efektivitas jalur evakuasi yang diusulkan, dengan harapan penelitian ini memberikan kontribusi signifikan untuk keamanan dan kesiapsiagaan Desa Ciputri dalam menghadapi potensi bencana.
Analysis of the Suitability of Clove Plants in Pelabuhan Ratu Sub-District Christian, Yoga Alfa; Manessa, Masita Dwi Mandini; Setiadi, Hafid
Jurnal Pendidikan Geografi Undiksha Vol. 12 No. 1 (2024): Jurnal Pendidikan Geografi Undiksha
Publisher : Universitas Pendidikan Ganesha

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23887/jjpg.v12i01.69342

Abstract

Indonesia is the largest clove-producing country in the world, this is because cloves are native plants from Indonesia which are also supported by natural conditions, climate, and topography. In Sukabumi Regency, cloves are the main production center in West Java. This study uses the scoring method by overlaying the data used. The data used in this study are rainfall data, soil type data, slope data, and altitude data. The results of this study found that the area for the "very suitable" class is quite dominant when compared to the "suitable" and "less suitable" class. the "less suitable" class has an area of 12.79 Km2 with a percentage of 13.81%, then for the "suitable" class it has an area of 29.95 Km2 with a percentage of 32.33%, and the "very suitable" class has an area of 49.91 Km2 with a percentage of 53.86%.
DISTRIBUSI SPASIAL KESEHATAN TANAMAN KARET MENGGUNAKAN SENTINEL-1 Ayu, Farida; Riesnandar, Ariq Anggaraksa; Manessa, Masita Dwi Mandini; Supriatna, Supriatna; LESTARI, Retno; Bustamam, Alhadi; Sarwinda, Devvi; Stevanuse, Charlos Togi; Efriana, Anisya Feby
Jurnal Penelitian Karet JPK : Volume 42, Nomor 1, Tahun 2024
Publisher : Pusat Penelitian Karet - PT. Riset Perkebunan Nusantara

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22302/ppk.jpk.v42i1.881

Abstract

Tanaman karet (Hevea brasiliensis) merupakan komoditas penting yang menjadi sumber pendapatan petani di Indonesia. Namun, dalam beberapa tahun terakhir perkebunan karet di Indonesia mengalami penurunan mutu dan produksi yang disebabkan oleh penyakit gugur daun Pestalotiopsis sp. Teknologi remote sensing dapat menjadi solusi dalam pemantauan kesehatan tanaman. Kendala tutupan awan dalam pemantauan perkebunan karet menggunakan citra optik menghambat keberlangsungan. Citra Sentinel-1 dilengkapi data Synthetic Aperture Radar (SAR) yang mampu untuk menembus awan. Sehingga, penelitian ini bertujuan untuk menganalisis distribusi spasial kesehatan tanaman dengan menggunakan multi indeks vegetasi RVI dan NDRVI pada citra Sentinel-1. Hasil penelitian menunjukan bahwa multi indeks vegetasi tidak memiliki hubungan yang signifikan dengan kelas kesehatan tanaman. Faktor noise, panjang gelombang, dan hamburan balik mengindikasikan rendahnya hubungan antar variabel.
Co-Authors Adi Wibowo Alyudin, Dyah Rizky Anggraini, Kurnia Annisa Fitria Asep Budiman Astuty, Yulia Indri Ayu, Farida Bustamam, Alhadi Charlos Togi Stevanus, Charlos Togi Christian, Yoga Alfa Demi Stevany, Demi Dewi Susiloningtyas Dony Kushardono Efriana, Anisya Feby Efriana, Feby Elok Lestari Paramita, Elok Lestari Fadhlurahman, Yusuf Nauval Firdaus, Pramudhian Fitriani, Sarah Putri Gathot Winarso, Gathot Giarrastowo, Gigih Golkariansyah Gultom, Rudy Agus Gemilang Gunawan, Dino Herianto Herianto Indira, Indira Kuncoro Teguh Setiawan, Kuncoro Teguh Kurniawansyah, Angga Kustiyo Kustiyo, Kustiyo Logan, Axel Gilbert Mardalena, Ayu Maulidina, Kintan Muhammad Dimyati Muhammad Haidar Mukhoriyah, Mukhoriyah Mukhtar, Mutia Kamalia Nagasawa, Ryota Nanin Anggraini, Nanin Noer, Marwah Novi Susetyo Adi, Novi Susetyo Nur Azizah Nurwita Mustika Sari, Nurwita Mustika Pamungkas, Fajar Dwi Permatasari, Ni Ketut Feny Prabandari, Amanah Anggun Prakarsa, Geraldo Nazar Pramudiyasari, Tia Pratamasari, Adisty Purwaningsih, Yuli Putra, I Kadek Yoga Dwi Rahmad Kurniawan Rahmadi, Rahmad Retno Lestari Riesnandar, Ariq Anggaraksa Rizqi, Bayu Rosid, Mohammad Syamsu Sarwinda, Devvi Semedi, Jarot Mulyo Setiadi, Hafid Shidiq, Iqbal Putut Ash Sopian, Nadya Ata Meiviana Stevanuse, Charlos Togi Suardana, A.A. Md. Ananda Putra Sunandar, Priyo Supardjo, A. Harsono Supardjo, Harsono Supriatna Supriatna Supriatna Supriyadi, Asep Adang Susetyo, Novi Adi Syamsu Rosid Takahiro Osawa Tambunan, Mangapul Parlindungan Tambunan, Rudy Parlindungan Tambunan, Rudy Parluhutan Ulfa, Kurnia Wikanti Asriningrum, Wikanti Wiratama, Eska Yosep Yuningsih Yuningsih