Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : JOIV : International Journal on Informatics Visualization

Assessment of Post-Disaster Building Damage Levels Using Back-Propagation Neural Network Prediction Techniques Wibowo Almais, Agung Teguh; Fajrin, Rahma Annisa; Naba, Agus; Sarosa, Moechammad; Juhari, Juhari; Susilo, Adi
JOIV : International Journal on Informatics Visualization Vol 9, No 3 (2025)
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62527/joiv.9.3.2711

Abstract

Indonesia is susceptible to natural disasters, with its geographical location being one of the contributing factors. To mitigate the harmful effects of natural catastrophes, a disaster emergency response must be undertaken, consisting of steps taken immediately following the event. These operations include rescuing and evacuating victims and property, addressing basic needs, providing protection, and restoring buildings and infrastructure. Accurate data is required for adequate recovery after a disaster. The Badan Penanggulangan Bencana Daerah (BPBD) oversaw disaster relief efforts, but faulty damage assessments slowed restoration. Surveyor subjectivity and differing criteria result in discrepancies between reported damage and reality, generating issues during the post-disaster reconstruction. The objective of this study is to develop a prediction system to measure the extent of damage caused by natural disasters to buildings. The five criteria that decide the level of building damage after a disaster are building conditions, building structure condition, physical condition of severely damaged buildings, building function, and other supporting conditions. The data used are from the BPBD of Malang city from 2019 to 2023. This system would allow surveyors to make speedy and objective evaluations. Five different models were tested using the Neural Network Backpropagation approach. Model A2 produces the highest accuracy of 93.81%. A2 uses a 40-38-36-34 hidden layer pattern, 1000 epochs, and a learning rate 0.1. These findings can lay the groundwork for advanced prediction models in post-disaster building damage evaluation research.
Co-Authors A Rosa, Ramadani Abdul Aziz Abdul Rachim Adi Susilo Aditya, M. Ircham Adriani, Nurita Agung Teguh Wibowo Almais Agus Naba ahmad yani Akbar, Rizqi Ardika Akhadah, Sisilia Firda Laila Alghar, Muhammad Zia Alianda W, Najwa Andrean, Mohamad Febry Angraini, Deffy Ari Kusumastuti Deli, Deli Dicky Wahyudi Dilla, Diva Fara DWI ANDREAS SANTOSA Dwi N, M. Zaky Erna Herawati, Erna Erny Octafiatiningsih, Erny Evawati Alisah Fajrin, Rahma Annisa Fatin Dzahabiy, Amirah Salsabila Syahirah Fauzi Fauzi Fibrianto, Ary Fikrina, Zulfa Akfi Gunawan, Arifin Faqih Hairur Rahman Hakim , Zainal Hamdan Hamdan Hasanah, Sofiatul Hasanuddin Hasanuddin Hidayati, Ummunisa Holanda, Sella Husna, Faridatul Imam Sujarwo Iskandar Iskandar Karinina, Olivia Kiswari, Dianing Kurnia, Silvi Kurniawan, Rony Setyo Lestari, Wahyu Tri Mahmuddin Mahmuddin Makrus, Mohamad Marzuki, Ahmed Syarief Masri, Desi Meyliana, Ester Moechammad Sarosa Mohammad Isa Irawan Mohammad Jamhuri Mohammad Nafie Jauhari Mondal, Kartick Chandra Muhammad Khudzaifah Muis, Muhammad Abdul Mulyadi Mulyadi Nasichuddin, Achmad Nasir, Yusran Noor, Raden Ajeng Alycia Putri Nur’azkia R, Nazwa Oktavirgianti, Alifah Permata, Hendrik Widya Pranata, Farahnas Imaniyah Pratiwi, Alfrista Anggraini Puji Wianto, Wildan Faried Anshoriy Putri, Inanda Rachmawati, Mila Rahmadhani, Anis Putri Rasyidah, Jihan Fikri Reza, M. Aulia Ria Dhea Layla Nur Karisma Rika Dina Amalia, Dina Amalia Rossi Maunofa Widayat RR. Ella Evrita Hestiandari Safitri, Alisa Ayu Said Amirulkamar Sapira, Bella Sari, Fitri Nofita shidieq, faris majdie Sofia, Wise Ahmad Sri Harini Sugianto, Efendi Suhardi Suhardi Sukroni, Achmad Faiz Susanto, Ady Susanto, Deki Syafi'ah, Nurus Taufik Iskandar Triyono, Gandung Tunggal Saputra, Tri Aji Turmudi Ulung Pribadi, Ulung Ulya, Diah Mariatul Usman Pagalay Utami, Febry Noorfitriana Wahyuni, Diah Maghfiroh Wan, Tjik Yuliana, Rossima Eva Yuri Is, Manaf Zakaria, Nor Balkish Zakariya, Husni Zufriady, Zufriady