Claim Missing Document
Check
Articles

Implementation of Oxymetry Sensors for Cardiovascular Load Monitoring When Physical Exercise Dhodit Rengga Tisna; M. Udin Harun Al Rasyid; Sritrusta Sukaridhoto
EMITTER International Journal of Engineering Technology Vol 8 No 1 (2020)
Publisher : Politeknik Elektronika Negeri Surabaya (PENS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24003/emitter.v8i1.482

Abstract

The performance condition of an athlete must always be maintained, one way to maintain that performance is by training. Each individual has different abilities and physiological responses in receiving the portion of the exercise. Physical exercise that exceeds the body's ability can worsen the condition of the athlete itself which can result in excessive fatigue (overtraining) or can even result in injury. Therefore a system is needed to monitor the condition of the physiological response when given the intensity of the training load so that the portion of the training provided provides positive benefits for the athlete. This system was developed using an oxymetry sensor, microcontroller and wifi module ESP8266. This system is used to collect heart rate and oxygen saturation data, then with the existing formula the heart rate value is converted to a CVL (Cardiovascular Load) value to determine the level of fatigue in athletes when given the intensity of the training load. By using a web-based application, measurement data is displayed in realtime to make it easier to see the results of monitoring. From the experimental results the system can monitor changes in the physiological condition of the athlete when given the intensity of the training load. Finally, the developed system can collect athlete's physiological data, and can store the data in a database and display it in a web application.
Develop a User Behavior Analysis Tool in ETHOL Learning Management System Dwi Susanto; Nuril Ratu Qurani; M. Udin Harun Al Rasyid
EMITTER International Journal of Engineering Technology Vol 9 No 1 (2021)
Publisher : Politeknik Elektronika Negeri Surabaya (PENS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24003/emitter.v9i1.570

Abstract

Students have different learning styles when studying online. Meanwhile, lecturers use the same method for all students who take their online lectures. These different learning styles can affect the level of understanding and the results obtained by students. By knowing student learning styles, lecturers are expected to be able to use the right way in delivering material. In this research, we developed a student behavior analysis feature on self-developed Virtual Learning Environment (VLE) called Enterprise Hybrid Online Learning (ETHOL). Students’ data collected includes data on online activities, personal data, and survey data on student learning styles. User behavior analysis was carried out by dividing into three clusters: average scores, time to collect assignments, and student learning styles. The clustering method used is the Hierarchical K-Means. The results obtained are students who have the habit of collecting assignments on time have higher scores than others. In addition, the lecturer is able to see the results of the analysis of the behavior and learning styles of each student. These results can be used as information in delivering lecture material.
Student Behavior Analysis to Predict Learning Styles Based Felder Silverman Model Using Ensemble Tree Method Yunia Ikawati; M. Udin Harun Al Rasyid; Idris Winarno
EMITTER International Journal of Engineering Technology Vol 9 No 1 (2021)
Publisher : Politeknik Elektronika Negeri Surabaya (PENS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24003/emitter.v9i1.590

Abstract

Learning styles are very important to know so that students can learn effectively. By understanding the learning style, students will learn about their needs in the learning process. One of the famous learning management systems is called Moodle. Moodle can catch student experiences and behaviors while learning and store all student activities in the Moodle Log. There is a fundamental issue in e-learning where not all students have the same degree of comprehension. Therefore, in some cases of learning in E-Learning, students tend to leave the classroom and lack activeness in the classroom. In order to solve these problems, we have to know students' preferences in the learning process by understanding each student's learning style. To find out the appropriate student learning style, it is necessary to analyze student behavior based on the frequency of visits when accessing Moodle E-learning and fill out the Index Learning Style (ILS) questionnaire. The Felder Silverman model's learning style classifies it into four dimensions: Input, Processing, Perception, and Understanding. We propose a learning style prediction model using the Ensemble Tree method, namely Bagging and Boosting-Gradient Boosted Tree. Afterwards, we evaluate the classification results using Stratified Cross Validation and measure the performance using accuracy. The results showed that the Ensemble Tree method's classification efficiency has higher accuracy than a single tree classification model.
Partition-Based GTS Adjustment for Wireless Sensor Networks M. Udin Harun Al Rasyid; Bih Hwang Lee; Amang Sudarsono
Journal of ICT Research and Applications Vol. 9 No. 2 (2015)
Publisher : LPPM ITB

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/itbj.ict.res.appl.2015.9.2.4

Abstract

The personal area network (PAN) coordinator can assign a guaranteed time slot (GTS) to allocate a particular duration for requested devices in IEEE 802.15.4 beacon-enabled mode. The main challenge in the GTS mechanism is how to let the PAN coordinator allocate time slot duration for the devices which request a GTS. If the allocated devices use the GTS partially or the traffic pattern is not suitable, wasted bandwidth will increase, which degrades the performance of the network. In order to overcome the abovementioned problem, this paper proposes the Partitioned GTS Allocation Scheme (PEGAS) for IEEE 802.15.4 networks. PEGAS aims to decide the precise moment for the starting time, the end, and the length of the GTS allocation for requested devices taking into account the values of the superframe order, superframe duration, data packet length, and arrival data packet rate. Our simulation results showed that the proposed mechanism outperforms the IEEE 802.15.4 standard in terms of the total number of transmitted packets, throughput, energy efficiency, latency, bandwidth utilization, and contention access period (CAP) length ratio.
SISTEM PEMANTAUAN DAN KONTROL OTOMATIS KUALITAS AIR BERBASIS INTERNET OF THINGS (IOT) MENGGUNAKAN PLATFORM NODE-RED UNTUK BUDIDAYA UDANG Ahmad Rifa'i; M Udin Harun Al Rasyid; Agus Indra Gunawan
Jurnal Teknologi Terapan Vol 7, No 1 (2021): Jurnal Teknologi Terapan
Publisher : P3M Politeknik Negeri Indramayu

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31884/jtt.v7i1.317

Abstract

Water quality in shrimp farming is an important factor that needs attention. Therefore good water quality becomes a measure of the success rate of shrimp cultivation. The main problem is the poor quality of water during the maintenance period. To overcome this problem, this paper proposes to use an Internet of things (IoT) device that can monitor water quality conditions and take preventive measures in the form of early notification and automatic control of each actuator in the cultivation pond. Some of the sensors used are Dissolved Oxygen (DO), Hydrogen Potential (pH), Turbidity, Water temperature and water level (ultrasonic sensor). Furthermore, water quality data will be sent to the server (Node-Red Platform) using the MQTT (Message Queue Telemetry Transport) protocol communication. Data processing carried out on the server uses the IFTTT (If This Then That) method and produces a decision in the form of a command (command set) to control the actuator on the actuator control node. From the performance test results, the delay occurs in sending data from the publisher to the subscriber is an average of 260 ms using the public HIVEMQ Broker. Whereas in automatic control testing, the response graph shows the action taken by the actuator control device after getting the command set generated by the IFTTT method on the Node-Red platform.
Implementasi Algoritma Clustering untuk Efisiensi Energi di Wireless Sensor Network Dona Wahyudi; M. Udin Harun Al Rasyid; Iwan Syarif
Jurnal Inovtek Polbeng Seri Informatika Vol 4, No 2 (2019)
Publisher : P3M Politeknik Negeri Bengkalis

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1193.678 KB) | DOI: 10.35314/isi.v4i2.1059

Abstract

Energy efficiency is a major challenge in implementing WSN, and the use of routing and clustering protocols are several ways that can maximize energy use. Energy efficiency is needed because WSN has limited energy resources from the battery and its placement in an area that is not always monitored making battery replacement difficult or cannot be done. This study uses AOMDV (Ad hoc On-demand Multipath Distance Vector) to provide a delivery path from source to destination. In addition, the arrangement of a balanced number of cluster members is done for each cluster. From the results of the experiment, it was found that by regulating the number of balanced cluster members has better energy efficiency results.
Optimasi Efisiensi Energi untuk Pemilihan Intermediate Cluster Head menggunakan MI-C LEACH: Multi-hop Inter-Cluster pada Jaringan Sensor Nirkabel Aidil Saputra Kirsan; M. Udin Harun Al Rasyid; Iwan Syarif
Jurnal Inovtek Polbeng Seri Informatika Vol 5, No 1 (2020)
Publisher : P3M Politeknik Negeri Bengkalis

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (425.169 KB) | DOI: 10.35314/isi.v5i1.1232

Abstract

Perbincangan hangat para peneliti pada jaringan sensor nirkabel masih kompleksitas pada penggunaan energi disetiap node. Hal ini dikarenakan kebutuhan informasi meningkat yang mempengaruhi perkembangan teknologi semakin meningkat pula. Sehingga, pertukaran informasi secara terus menerus menyebabkan penurunan masa hidup node. Solusi untuk permasalahan tersebut adalah menggunakan routing protocol seperti Low Energy Adaptive Clustering Hierarchy (LEACH). Protokol LEACH bekerja dengan melakukan pengelompokan node dan memilih kepala kluster (CH) yang bertugas untuk mengirimkan data ke Sink Node (SN). Salah satu kelemahan protokol LEACH adalah CH yang jauh dari SN dimana memerlukan energi banyak untuk pengiriman data ke SN. Salah satu cara untuk mengurangi konsumsi energi tiap CH jauh adalah dengan menggunakan komunikasi multi-hop. Pada makalah ini, kami mengusulkan Multi-hop Inter-Cluster LEACH (MI-C LEACH) dengan algoritma pengembangan dari protokol LEACH. Hasil simulasi menggunakan OMNeT++ menunjukkan bahwa jumlah node 100 pada rata-rata energi tersisa dari MI-C LEACH jauh lebih banyak dari LEACH dengan perbedaan rata-rata 27.082 watt. Tetapi pada jumlah node 200, MI-C LEACH tidak berbeda jauh energi yang tersisa dari LEACH untuk setiap jumlah putaran 100 hingga 600.
Implementasi dan Analisis Protokol Komunikasi IoT untuk Crowdsensing pada Bidang Kesehatan Ata Amrullah; M. Udin Harun Al Rasyid; Idris Winarno
Jurnal Inovtek Polbeng Seri Informatika Vol 7, No 1 (2022)
Publisher : P3M Politeknik Negeri Bengkalis

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35314/isi.v7i1.2365

Abstract

Perkembangan teknologi informasi dan komunikasi telah menandai berlangsungnya era revolusi industri 4.0. Kemudahan pertukaran data antar perangkat yang bergerak menjadikan paradigma baru pada pengumpulan data terpusat yang disebut crowdsensing. Pada bidang kesehatan, crowdsensing tidak lagi mengandalkan telepon bergerak sebagai perangkat pengumpul informasi karena keterbatasan sensor tertanam pada telepon. Berbagai penelitian menggunakan crowdsensing telah mengandalkan kemampuan dari perangkat Internet of Things (IoT). Crowdsensing pada sektor kesehatan dapat membantu mengumpulkan sumber data yang substansial tentang kondisi kesehatan masyarakat secara umum. Namun, kebanyakan teknik crowdsensing hanya mengandalkan satu protokol komunikasi. Metode ini dapat menyebabkan masalah jika perangkat IoT menggunakan protokol komunikasi yang beragam. Oleh sebab itu, kami mengusulkan arsitektur gateway protokol multi-komunikasi untuk crowdsensing. Ketiga protokol komunikasi yang dijalankan pada gateway adalah MQTT, HTTP dan CoAP. Gateway ini berfungsi untuk menangkap data dari crowdsensor dan mengubah ketiga protokol ke dalam protokol yang sama dengan back-end server di cloud. Hasil pengujian menunjukkan bahwa gateway mampu menerima data dengan baik meskipun ketiga protokol dijalankan secara bersamaan. Protokol CoAP memiliki kinerja yang lebih baik daripada kedua protokol dalam pengujian throughput. Protokol MQTT memiliki performa terbaik pada pengukuran delay.
Deteksi Kebocoran Pipa Air Menggunakan Machine Learning dengan Jaringan Nirkabel IEEE 802.15.4 Kurniawan Saputra; M. Udin Harun Al Rasyid; Muh. Zen Samsono Hadi
Jurnal Inovtek Polbeng Seri Informatika Vol 7, No 1 (2022)
Publisher : P3M Politeknik Negeri Bengkalis

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35314/isi.v7i1.2360

Abstract

Pipa adalah cara paling ekonomis dan paling aman dalam mendistribusikan hasil produk seperti air, petrokimia, gas, dan cairan lainnya. Terlepas dari manfaat tersebut, ternyata pipa memiliki ancaman yaitu potensi kebocoran. Artikel ini membahas pendeteksian kebocoran pipa air menggunakan parameter debit aliran. Pengujian dilakukan pada dua format dataset, menggunakan raw dataset dan process dataset menggunakan metode volume balance. Pada proses pembelajaran ada beberapa hal yang perlu disoroti seperti pemilihan tipe dataset, pre-processing dengan menormalisasi dataset, dan menerapkan metode fungsi kernel untuk meningkatkan kinerja akurasi prediksi ukuran dan lokasi kebocoran pipa. Dataset dilatih menggunakan algortima SVM untuk mengklasifikasikan ukuran dan lokasi kebocoran pipa. Hasil klasfikasi ukuran kebocoran dengan fungsi kernel polynomial pada raw dataset mencapai akurasi sebesar 98,25%, recall 99,1%, presisi 99,8%, dan F-measure 99,5%. Sedangkan fungsi kernel Radial Basis Function pada process dataset mencapai akurasi tertinggi sebesar 89,7%, recall 94,4%, presisi 95,4%,  dan F-measure 94,6%. Dalam hal mengidentifkasikan lokasi kebocoran, fungsi kernel polynomial pada raw dataset meningkatkan akurasi sebesar 88,96%, recall 94,7%, presisi 91,5%, dan F-measure 92,8%. Sedangkan fungsi kernel polynomial pada process dataset mencapai akurasi sebesar 74,42%, recall 74,1%, presisi 72,8%, dan F-measure 71,3%.
Handling Missing Value dengan Pendekatan Regresi pada Dataset Akuakultur Berukuran Kecil Ricky Afiful Maula; Agus Indra Gunawan; Bima Sena Bayu Dewantara; M. Udin Harun Al Rasyid; Setiawardhana Setiawardhana; Ferry Astika Saputra; Junaedi Ispianto
Jurnal Rekayasa Elektrika Vol 18, No 3 (2022)
Publisher : Universitas Syiah Kuala

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (859.749 KB) | DOI: 10.17529/jre.v18i3.25903

Abstract

Shrimp cultivation is strongly influenced by pond water quality conditions. Farmers must know the appropriate action in regulating water quality that is suitable for shrimp survival. The state of water quality can be understood by measuring pond parameters using various sensors. Installing sensors equipped with artificial intelligence modules to inform water quality conditions is the right action. However, the sensor cannot be separated from errors, so it results in not being able to get data or missing data. In this case, the approach of 5 parameters of pond water quality from 13 available parameters is carried out. This paper proposes a technique to obtain lost data caused by sensor error and looks for the best model. A simple approach can be taken, such as the Handling Missing Value (HMV), which is commonly used, namely the mean, with the K-Nearest Neighbors (KNN) classifier optimized using a grid search. However, the accuracy of this technique is still low, reaching 0.739 at 20-fold cross-validation. Calculations were carried out with other methods to further improve the prediction accuracy. It was found that Linear Regression (LR) can increase accuracy up to 0.757, which outperforms different approaches such as the statistical approach to mean 0.739, mode 0.716, median 0.734, and regression approach KNN 0.742, Lasso 0.751, Passive Aggressive Regressor (PAR) 0.737, Support Vector Regression (SVR) 0.739, Kernel Ridge (KR) 0.731, and Stochastic Gradient Descent (SGD) 0.734.
Co-Authors A Wildan J Achmad Basuki Achmad Basuki Agus Indra Gunawan Agus Indra Gunawan Agus Prasetyo Ahmad Rifa'i Ahmad Rifai Ahsan, Ahmad Syauqi Aidil Saputra Kirsan Al Falah, Adam Ghazy Alfaqih, Wildan Maulana Akbar Alfian Fahmi Alfian Fahmi, Alfian Ali Ridho Barakbah Amang Sudarsono, Amang Amma Liesvarastranta Haz Andhik Ampuh Yunanto Andi Roy Arna Fariza Asmara, Rengga Ata Amrullah Aziz, Adam Shidqul Bih Hwang Lee Bima Sena Bayu Dewantara Budiarti, Rizqi Putri Nourma Darmawan, Zakha Maisat Eka Desy Intan Permatasari, Desy Intan Dhodit Rengga Tisna Dian Neipa Purnamasari Dona Wahyudi Dwi Susanto Edelani, Renovita Edi Satriyanto Eka Saputra Aji Eka Saputra Aji, Eka Saputra Eko Prayitno Entin Martiana Kusumaningtyas Evianita Dewi Fajrianti Ferry Astika Saputra Ferry Astika Saputra Ferry Astika Saputra Fitri, Novi Aryani Gezaq Abror Hary Oktavianto Hendi Yanuar Setianto Herman Yuliandoko Herman Yuliandoko Herman Yuliandoko, Herman I Gede Puja A I Gede Puja Astawa I Gede Puja Astawa Idris Winarno Ilham Achmad Al Hafidz Isbat Uzzin Nadhori Isbat Uzzin Nadhori, Isbat Uzzin iwan Syarif Jauari Akhmad Nur Hasim Junaedi Ispianto Khoirunnisa, Asy Syaffa Kindarya, Fabyan Kurniawan Saputra Kusuma, Selvia Ferdiana M. Husni Mubarrok Mufid, Mohammad Robihul Muh. Zen Samsono Hadi Muhammad Aksa Hidayat Muhammad Iskandar Dzulqornain Nana Ramadijanti, Nana Naufal Adi Satrio Nobuo Funabiki Nobuo Funabiki, Nobuo Nur Rosyid Mubtadai, Nur Rosyid Nurazmi, Talita Iza Nuril Ratu Qurani Nurul Fahmi Nurul Fahmi Nurul Fahmi Nusantoko, Yuliarta Rizki Primajaya, Grezio Arifiyan Rachma Rizqina Mardhotillah Rengga Asmara Ricky Afiful Maula Riyadh Arridha Rizki Amalia Rozie, Fachrul Rusminto Tjatur Widodo Sa'adah, Umi Setiawardhana Setiawardhana Setiawardhana Setiawardhana Sritrusta Sukaridhoto Subono . Subono ., Subono Subono Subono Sumarsono, Irwan Titing Magfirah Tomy Iskandar Vivien Arief Wardhany Wirama, I Made Adiswara Yunia Ikawati