Claim Missing Document
Check
Articles

Membangun Sistem Informasi Administrasi Berbasis Web di RW. 024 Karangsatria, Tambun Utara Bekasi Danny, Muhtajuddin; Muhidin, Asep; Butsianto, Sufajar; Triwibowo, Edi
Lentera Pengabdian Vol. 1 No. 02 (2023): April 2023
Publisher : Lentera Ilmu Nusantara

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59422/lp.v1i02.37

Abstract

Administrative services are very important and become a routine for village government. One of them is in the office of the Rukun Warga 024 Karangsatria Village, North Tambun, Bekasi. The importance of letter administration services in government agencies requires accuracy and service optimization, so that this letter administration service runs optimally and there should be no more errors and mistakes in carrying out this administrative service. With the development of information technology, it gives color to the author to create a web-based administrative information sistem at the Rukun Warga office 024 Karangsatria Village, Tambun Utara, Bekasi. This sistem will make it easy for the public to apply for letters such as a certificate of incapacity and a certificate of domicile, and also provide information.. Keywords: Administration, Web, PHP
IMPLEMENTASI PROSES PEMBELAJARAN TERHADAP PARA GURU DENGAN APLIKASI MICROSOFT OFFICE DI SMP IT AL-HIDAYAH Edy Widodo; Sufajar Butsianto; Andriani, Andriani; Amali, Amali
JURNAL PENGABDIAN MANDIRI Vol. 4 No. 6: Juni 2025
Publisher : Bajang Institute

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Dalam mengembangkan duia pendidikan itu tidak mudah dan banyak sekali kendala-kendala yang memang harus kita hadapi bersama, terutama terkait dengan begitu pesatnya perkembangan Teknologi Informasi yang saat ini memang sangat dibutuhkan dan sangat berpengaruh dalam dunia pendidikan. SMP IT Al-Hidayah adalah sebuah pendidikan yang berkembang untuk ikut serta dalam memajukan dunia pendidikan di Indonesia dan masyarakat luas. Untuk meningkatkan kreatifitas para guru dilingkungan Al-Hidayah perlu dilakukan pelatihan-pelatihan Microsoft Office secara berkelanjutan untuk meningkatkan pengetahuan dan kreatifitas pendidikan di masa akan datang untuk menunjan era teknologi digitalisasi sehingga pelatihan Microsoft Office di lingkungan SMP IT Al-Hidayah dapat berjalan dengan baik dan lancar
Website Based Clinic Health Service Application Model Valentin*, M Ryan Bagus; Butsianto, Sufajar; Fatchan, Muhamad
Riwayat: Educational Journal of History and Humanities Vol 7, No 3 (2024): July, Educational and Social Issue
Publisher : Universitas Syiah Kuala

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24815/jr.v7i3.39593

Abstract

Traditional and basic service models continue to be a source of many issues with public health services. This research aims to optimize the efficiency and quality of service at the Atlantic Clinic through the implementation of a web-based information system. Analysis and trials show that current conventional service methods are no longer adequate, causing sub-optimality in the service process. The new system designed is able to increase administrative efficiency by speeding up recording and searching for patient data. In addition, the queuing system provides better time estimation for patients, while the medical record system ensures the security and accuracy of patient data. An integrated cashier system also increases the efficiency of payment transactions, reducing cost calculation errors. Management of master data which includes data on drugs, medical procedures, doctors and users becomes more structured and accurate. The implementation of this system is expected to bring significant changes in the quality of service at the Atlantic Clinic, making it more modern, effective and efficient.
Pelatihan Penggunaan Media Sosial untuk Pemasaran di ASM Insulindo Butsianto, Sufajar; Sulaeman, Asep Arwan; Siswandi , Arif; Setyawan, Wisnu
VIDHEAS: Jurnal Nasional Abdimas Multidisiplin Vol. 3 No. 1 (2025): Juni 2025
Publisher : VINICHO MEDIA PUBLISINDO

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.61946/vidheas.v3i1.117

Abstract

Kegiatan pengabdian kepada masyarakat ini bertujuan untuk meningkatkan pemahaman dan keterampilan mahasiswa serta civitas akademika ASM Insulindo dalam memanfaatkan media sosial sebagai sarana pemasaran yang efektif di era digital. Di tengah pesatnya perkembangan teknologi informasi, media sosial seperti Instagram, TikTok, dan Facebook telah menjadi platform strategis dalam memperluas jangkauan bisnis dan membangun brand awareness. Namun, pemanfaatannya masih belum optimal di kalangan mahasiswa yang memiliki potensi besar sebagai digital marketer. Melalui pelatihan ini, peserta dibekali dengan pengetahuan dasar mengenai digital marketing, strategi konten kreatif, penggunaan fitur-fitur iklan media sosial, serta analisis performa pemasaran digital. Metode yang digunakan meliputi ceramah, diskusi interaktif, praktik langsung, dan studi kasus. Hasil kegiatan menunjukkan peningkatan signifikan dalam pemahaman peserta terhadap teknik pemasaran digital serta kemampuan membuat dan mengelola konten promosi secara mandiri. Diharapkan pelatihan ini dapat menjadi langkah awal dalam menciptakan wirausahawan muda yang adaptif terhadap perkembangan teknologi digital.
Analisis Sentimen Pengguna X Terhadap Isu Adzan Menjadi Running Text Menggunakan Algoritma K-Nearest Neighbors (KNN) Baharudin, Arya Rifaldi; Butsianto, Sufajar; Supriyanto, Asep
Journal of Information System Research (JOSH) Vol 6 No 4 (2025): Juli 2025
Publisher : Forum Kerjasama Pendidikan Tinggi (FKPT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/josh.v6i4.8055

Abstract

Sentiment analysis has become an important method for understanding public opinion on social and religious issues. This study aims to analyze user sentiment regarding the issue of the adzan presented in a running text format using the K-Nearest Neighbors (K-NN) algorithm. The adzan as running text on national television occurred during Pope Francis's mass at Gelora Bung Karno Stadium (GBK) on September 5, 2024. The Ministry of Religious Affairs (Kemenag) advised that the Maghrib adzan, usually broadcast on national television, be replaced with running text. This recommendation was made to facilitate the live broadcast of the mass attended by Christian congregants and to honor the worship without disruption. Some parties, such as the Indonesian Ulema Council (MUI) and the General Chairman of PP Persis, stated that replacing the adzan with running text does not violate Islamic law, while Minister of Communication and Information Budi Arie Setiadi mentioned that the change is merely a suggestion. The research findings indicate that the K-NN algorithm involves several stages, including data collection and labeling, text processing, feature extraction using TF-IDF, and splitting the data into 80% for Training and 20% for Testing. Based on the test results, the K-NN model detected 10 positive sentiments and 168 negative sentiments, indicating a tendency for Twitter users to express more negative sentiments. Analysis using a Confusion matrix shows that this model achieved an accuracy rate of 88%, indicating good performance in sentiment classification.
Analisis Sentimen Ulasan Aplikasi Jamsostek dengan SVM, Random Forest, dan Logistic Regression Butsianto, Sufajar; Rifa'i, Anggi Muhammad
Jurnal Informatika Ekonomi Bisnis Vol. 7, No. 3 (September 2025)
Publisher : SAFE-Network

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37034/infeb.v7i3.1266

Abstract

The digitalization of public services has encouraged the development of the Jamsostek Mobile (JMO) application by BPJS Ketenagakerjaan. This application is expected to provide convenience in accessing information, JHT claims, and other services. However, user reviews on the Google Play Store show diverse perceptions, ranging from satisfaction to technical complaints. This study aims to conduct sentiment analysis on user reviews of the JMO application by classifying opinions into positive, negative, and neutral sentiments. Data were collected through crawling from the Google Play Store and processed using text preprocessing stages, including data cleaning, case folding, stopword removal, tokenization, stemming, and Term Frequency–Inverse Document Frequency (TF-IDF) weighting. The classification process was then carried out using three machine learning algorithms, namely Support Vector Machine (SVM), Random Forest, and Logistic Regression. The results indicate that negative sentiment dominates with 46%, followed by positive sentiment at 40% and neutral at 14%. Most complaints are related to login difficulties, application errors, and technical bugs in claim features. In terms of algorithm performance, SVM with a linear kernel achieved the highest accuracy of 87.5% and an F1-score of 0.87, outperforming Random Forest (85.3%) and Logistic Regression (82.7%). Academically, this study reinforces the effectiveness of SVM in sentiment analysis using TF-IDF, while practically providing recommendations for BPJS Ketenagakerjaan to improve system stability, login speed, and reduce application bugs to enhance user satisfaction.
Analisis Sentimen Ulasan Aplikasi Jamsostek dengan SVM, Random Forest, dan Logistic Regression Butsianto, Sufajar; Rifa'i, Anggi Muhammad
Jurnal Informatika Ekonomi Bisnis Vol. 7, No. 3 (September 2025)
Publisher : SAFE-Network

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37034/infeb.v7i3.1266

Abstract

The digitalization of public services has encouraged the development of the Jamsostek Mobile (JMO) application by BPJS Ketenagakerjaan. This application is expected to provide convenience in accessing information, JHT claims, and other services. However, user reviews on the Google Play Store show diverse perceptions, ranging from satisfaction to technical complaints. This study aims to conduct sentiment analysis on user reviews of the JMO application by classifying opinions into positive, negative, and neutral sentiments. Data were collected through crawling from the Google Play Store and processed using text preprocessing stages, including data cleaning, case folding, stopword removal, tokenization, stemming, and Term Frequency–Inverse Document Frequency (TF-IDF) weighting. The classification process was then carried out using three machine learning algorithms, namely Support Vector Machine (SVM), Random Forest, and Logistic Regression. The results indicate that negative sentiment dominates with 46%, followed by positive sentiment at 40% and neutral at 14%. Most complaints are related to login difficulties, application errors, and technical bugs in claim features. In terms of algorithm performance, SVM with a linear kernel achieved the highest accuracy of 87.5% and an F1-score of 0.87, outperforming Random Forest (85.3%) and Logistic Regression (82.7%). Academically, this study reinforces the effectiveness of SVM in sentiment analysis using TF-IDF, while practically providing recommendations for BPJS Ketenagakerjaan to improve system stability, login speed, and reduce application bugs to enhance user satisfaction.
Penerapan Machine Learning untuk Prediksi Kenaikan Harga Beras Premium Menggunakan Algoritma Regresi Linier: Application of Machine Learning for Premium Rice Price Increase Prediction Using Linear Regression Algorithm Widiyatmoko, Arif Tri; Butsianto, Sufajar; Nugroho, Agung
MALCOM: Indonesian Journal of Machine Learning and Computer Science Vol. 5 No. 3 (2025): MALCOM July 2025
Publisher : Institut Riset dan Publikasi Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.57152/malcom.v5i3.2123

Abstract

Ketidakstabilan harga beras premium sebagai komoditas pangan pokok memerlukan solusi prediksi yang akurat untuk membantu perencanaan ekonomi. Penelitian ini menerapkan algoritma Machine Learning, yaitu Regresi Linier, untuk memprediksi kenaikan harga beras premium. Model dilatih menggunakan data historis harga dan dievaluasi kinerjanya dengan metrik MAE (0.244), MSE (0.092), dan R-squared (0.893), menunjukkan tingkat akurasi yang cukup baik dalam memprediksi harga. Selanjutnya, model yang berhasil dikembangkan diimplementasikan ke dalam aplikasi web interaktif berbasis Streamlit. Aplikasi ini memungkinkan pengguna untuk memasukkan tanggal dan secara langsung mendapatkan prediksi harga beras premium. Hasil penelitian menunjukkan bahwa Regresi Linier efektif dalam memprediksi harga beras premium, dan implementasi ke dalam aplikasi Streamlit berhasil menyediakan alat prediksi yang mudah diakses. Meskipun demikian, penelitian lanjutan dapat berfokus pada peningkatan akurasi model dan eksplorasi algoritma Machine Learning lainnya untuk prediksi harga komoditas
Sentiment Analysis Of Indosat's Mobile Operator Services On Twitter Using The Naïve Bayes Algorithm Butsianto, Sufajar; Fauziah, Sifa; Naya, Candra; Maulana, Futuh
Brilliance: Research of Artificial Intelligence Vol. 4 No. 1 (2024): Brilliance: Research of Artificial Intelligence, Article Research May 2024
Publisher : Yayasan Cita Cendekiawan Al Khwarizmi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47709/brilliance.v4i1.4084

Abstract

Twitter is a social media that allows users to share information with others in real time. Information that is shared on Twitter is usually referred to as a tweet. Sentiment analysis is a branch of research in the text mining domain where the process of identifying and extracting sentiment data will usually be categorized based on its polarity, whether it is positive, negative or neutral. We can process data from opinions on Twitter using data mining techniques, namely classification. The algorithm that will be used in this research is the Naïve Bayes Algorithm. This research will also use the RStudio application. It is a computer programming language that allows users to program algorithms and use tools that have been developed through R by other users. R is a high-level programming language and is also an environment for data and graph analysis. Based on the experimental results, using a comparison of training data and test data of 20%: 80%, 40%: 60%, 60%: 40%, 80%: 20% and 90%:10%, the results of sentiment classification using the Naïve Bayes method are obtained. and using 10-fold cross validation obtained an average value of 85.00% accuracy and The decrease in machine learning performance occurs in the ratio of 80:20 or 1440 training data: 360 data testing, while the ratio of 20%:80% and 90%:10% has the same accuracy value, namely 85.41%.
Sentiment Analysis on Social Media X (Twitter) Against ChatGBT Using the K-Nearest Neighbors Algorithm Arwan Sulaeman, Asep; Danny, Muhtajuddin; Butsianto, Sufajar; Pratama, Suria
Brilliance: Research of Artificial Intelligence Vol. 4 No. 1 (2024): Brilliance: Research of Artificial Intelligence, Article Research May 2024
Publisher : Yayasan Cita Cendekiawan Al Khwarizmi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47709/brilliance.v4i1.4105

Abstract

This research aims to analyze the public's response to ChatGPT through data obtained from Twitter. Apart from that, it is also to understand whether people's responses tend to be positive or negative towards ChatGPT, as well as to test the performance of the K-Nearest Neighbors (KNN) method in classifying sentiment patterns in tweet data. The sentiment analysis method is carried out by dividing public responses into positive and negative categories. Next, the performance of the K-Nearest Neighbors (KNN) method was tested with varying k values ??to classify sentiment patterns in tweet data. This testing includes dataset division, vectorization of text data using TF-IDF, initialization and training of the KNN model, and evaluation of model performance using metrics such as precision, recall, and f1-score. The results of sentiment analysis show that the majority of people's responses to ChatGPT are positive (74.3%), while 25.7% of responses are negative. Performance testing of the KNN model shows that the highest accuracy of 88% is achieved when the k value is 5. Evaluation of model performance also shows satisfactory levels of precision, recall and f1-score. Based on the research results, it was concluded that sentiment analysis and classification using KNN were effective in understanding people's responses to ChatGPT
Co-Authors . Ermanto Abdul Halim Anshor Agung Nugroho Agus Suwarno Aguswin, Ahmad Ahmad Turmudi Zy Amali, Amali Ananda, Angga Thifal Ananto Tri Sasongko Andre Ardiansyah Andriani Andriani Andriani Andriani Anggi Muhammad Rifa'i Anggi Muhammad Rifai Anisah Purnamasari Aprila Hardi, Resty Arief Nur Hidayat ARIF SUSILO Aris Iskianto Aris Iskianto2 Arwan Sulaeman, Asep Asep Muhidin Asep Muhidin Baharudin, Arya Rifaldi Budi Rahardjo, Sugeng Candra Naya Candra Naya Dewi Sekar Arum Dian Riki Pangestu Dicky Winanda Santoso Donny Maulana Edi Tri Triwibowo Edi Tri Wibowo Edora Edora Edy Widodo Edy Widodo Eka Nur Arifin Eko Putra, Fibi Elkin Rilvani Endah Yaodah Kodratillah Ermanto Ermanto Fathurrahman, Humam Fauzi Ahmad Muda febriyanti febriyanti Herdiyan, Serly Humam Fathurrahman Ikhsan Romli Irfan, Yusuf Kodratillah, Endah Yaodah Makmun Effendi, M. Mamat Casmat Maryani Manik Maulana, Futuh Muhamad Fatchan Muhammad Faisal Muhammad Fatchan Muhammad Fikri Fauzan muhidin, asep Muhtajuddin Danny Naya, Candra Nindi Tya Mayangwulan Nurhali Saepudin Nurhali Saepudin Oktavianti, Risma Nadia Otib Subagja Pratama, Suria Puput Riyanti Purwanto Purwanto Putra, Irga Ramadhan Putri Riandani, Andini Raharjo, sugeng budi Ramadhan, Aldi Retno Fitri Astuti Rifa'i, Anggi Muhammad Romli S. Sunge, Aswan Selviana, Vina Setyaningrum, Retno Purwani Setyaningrum Setyawan, Wisnu Sifa Fauziah Sifa Fauziah, Sifa Siswandi , Arif Siswandi, Arif Siti Rahayu Sulaeman, Asep Arwan Sunge , Aswan S. Supriyanto Supriyanto, Asep Suratman Suratman Suy, Kaleb Syahlan Sugiarto Tedi, Nanang Triwibowo, Edi Turmud Zy, Ahmad Valentin*, M Ryan Bagus Wachid Hasyim, Wachid Widiyatmoko, Arif Tri Wiyanto Wiyanto Wiyanto Yolanda Alviana