Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : Jurnal Teknologi Sistem Informasi dan Aplikasi

Komparasi Metode Klasifikasi terhadap Data Penderita Penyakit Diabetes Menggunakan Python 3 Pratiwi, Ayu Okta; Kurniawan, Tri Basuki; Negara, Edi Surya; Kunang, Yesi Novaria
Jurnal Teknologi Sistem Informasi dan Aplikasi Vol. 6 No. 4 (2023): Jurnal Teknologi Sistem Informasi dan Aplikasi
Publisher : Program Studi Teknik Informatika Universitas Pamulang

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Diabetes is a serious challenge in the world of health, with broad impacts. In an effort to overcome this problem, it is important to analyze the classification of diabetes data to provide valuable insights. This study focuses on the comparison of the two main classification methods, namely Naive Bayes and Support Vector Machine (SVM), in analyzing diabetes data. We use the Python 3 programming language for implementation. The initial study involved the characterization of the dataset, including parameters such as blood pressure and blood glucose levels, which were important factors in the analysis. The preprocessing process is carried out to ensure data quality by overcoming missing or invalid values. After that, the dataset is divided into training and testing subsets. The Naive Bayes and SVM methods are implemented using the scikit-learn library in Python 3. Both models are trained using a training subset and tested on a test subset. The test results show that both methods have good performance in classifying diabetes data, but SVM stands out with higher accuracy. SVM has the ability to handle complex data and find optimal decision boundaries. The Naive Bayes model achieves the highest accuracy of 78.13% on 70% training data and 30% testing data, while the SVM model achieves 79.63% on 90% training data and 10% testing data. Overall, this study provides an in-depth understanding of the effectiveness of both methods in the context of classifying data on diabetics.
Co-Authors - Kurniawan, - Adi Wijaya Agus Riyanto Alde Alanda, Alde Alqudah, Mashal Kasem Alqudah, Musab Kasim Andri Andri Antoni, Darius Armoogum, Sheeba Armoogum, Vinaye Asro, Asro Astried, Astried Aziz, RZ. Abdul Azmi, Nurhafifi Binti Bappoo, Soodeshna Batumalay, Malathy Bidul, Winarsi J. Bujang, Nurul Shaira Binti Chandra, Anurag Dedy Syamsuar Dewi, Deshinta Arrova Dewi, Deshinta Arrowa Diana Diana Edi Surya Negara Eko Risdianto Fadly Fadly Fatoni, Fatoni Febriyanti Panjaitan Firosha, Ardian Fuad, Eyna Fahera Binti Eddie Habib, Shabana Hadi Syahputra Hanan, Nur Syuhana binti Abd Hasibuan, M.S. Henderi . Hendra Kurniawan Herdiansyah, M. Izman Hidayani, Nieta Hisham, Putri Aisha Athira binti Irianto, Suhendro Y. Irwansyah Irwansyah Ismail, Abdul Azim Bin Isnawijaya, Isnawijaya Joan Angelina Widians, Joan Angelina Kijsomporn, Jureerat Kurniawan, Dendi Lexianingrum, Siti Rahayu Pratami M Said Hasibuan Madjid, Fadel Muhammad Maizary, Ary Mantena, Jeevana Sujitha Mashal Alqudah Melanie, Nicolas Misinem, Misinem Mohd Salikon, Mohd Zaki Motean, Kezhilen Muhamad Akbar Muhammad Islam, Muhammad Muhammad Nasir Muhayeddin, Abdul Muniif Mohd Nathan, Yogeswaran Nazmi, Che Mohd Alif Oktariansyah Oktariansyah, Oktariansyah Onn, Choo Wou Periasamy, Jeyarani Prahartiningsyah, Anggari Ayu Pratiwi, Ayu Okta Praveen, S Phani Puspitasari, Novianti Qisthiano, M Riski R Rizal Isnanto Rahmi Rahmi RR. Ella Evrita Hestiandari Saksono, Prihambodo Hendro Saringat, Zainuri Singh, Harprith Kaur Rajinder Sirisha, Uddagiri Sri Karnila Sugiyarto Surono, Sugiyarto Sulaiman, Agus Sunda Ariana, Sunda Suriani, Uci Syaputra, Hadi Taqwa, Dwi Muhammad Thinakaran, Rajermani Triloka, Joko Udariansyah, Devi Usman Ependi Wibaselppa, Anggawidia Yeh, Ming-Lang Yesi Novaria Kunang Yorman Yupika Maryansyah, Yupika Yusuf, Abi daud Zakari, Mohd Zaki Zakaria, Mohd Zaki