Claim Missing Document
Check
Articles

Found 12 Documents
Search
Journal : MATEMATIKA

PROGRAM PECAHAN LINEAR Endarwati, Erlin Dwi; Khabibah, Siti; ., Farikhin
MATEMATIKA Vol 17, No 1 (2014): Jurnal Matematika
Publisher : MATEMATIKA

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (46.924 KB)

Abstract

. Linear Fractional Programming (LFP) problem is general form of Linear Programming (LP) problem. LFP problem arise when there is requirement to optimalize the efficiency of some activity. The efficiency related to the most productive way to use the scarce resources. Many method have been published to solve LFP problem. In this final project explained two methods, Charnes-Cooper’s method and Hasan-Acharjee’s method. The both method use a transformation to change LFP problem become LP problem, then solved by simplex method. Finally, it is concluded that there is comparison that the Charnes-Cooper’s method can be applied in all of LFP form which the set of feasible solutions is non-empty and bounded, but the formed LP becoming more complex than Hasan-Acharjee’s method. Hasan-Acharjee’s method cannot be used when the constanta of denominator in objective function is zero.
PERBANDINGAN ANALISA IMAGE WAJAH DIGITAL MENGGUNAKAN METODE COSINUS PAKET (CPT) DAN METODE WAVELET (DWT) suparti, Suparti; Farikhin, Farikhin
MATEMATIKA Vol 6, No 3 (2003): Jurnal Matematika
Publisher : MATEMATIKA

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (102.783 KB)

Abstract

Dalam perkembangan IPTEK seringkali dilakukan pengiriman image melalui suatu media misalnya satelit. Dalam proses pengiriman image ini seringkali mengalami noise (gangguan) yang mengakibatkan image yang diterima menjadi tidak jelas (kabur). Untuk mendapatkan image yang mirip dengan aslinya maka ganguan ini harus dihilangkan (denoising). Dalam analisa image, dapat ditentukan image terbaik dengan menghilangkan gangguan. Analisa image ini dapat dilakukan dengan metode cosinus Fourier (DCT) yang kemudian dikembangkan dalam metode cosinus paket (CPT) maupun dengan metode wavelet (DWT) yang kemudian dikembangkan menjadi metode wavelet paket (WPT). Kebaikan dalam analisa dapat dilihat dari besar kecilnya penyimpangan yang terjadi. Semakin kecil penyimpangannya semakin baik analisa imagenya. Salah satu ukuran untuk menentukan besar penyimpangan adalah dengan menentukan besar MSE (Mean Squared Error). Dalam penelitian ini dilakukan perbandingan analisa image wajah digital menggunakan metode cosinus paket (CPT) dan metode wavelet (DWT) dengan tujuan menentukan image wajah terbaik menggunakan metode CPT dan DWT serta menentukan metode yang lebih efektif. Penelitian ini merupakan kajian literatur yang dikembangkan dengan simulasi menggunakan software S+Wavelets. Dalam analisa image wajah digital metode DWT lebih efektif dari metode CPT.  
BANACH LATTICE YANG MEMUAT cO Farikhin, Farikhin
MATEMATIKA Vol 10, No 2 (2007): JURNAL MATEMATIKA
Publisher : MATEMATIKA

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (46.984 KB)

Abstract

Let Banach lattices E and F. Lattice homomorphism T : E ® F is called lattice embedding if there exists positive numbers m and n such that  for all xÎE implies m.|||| £ ||T()|| £ n.||||. In others word, Banach lattice E is said to be lattice embeddable in F if there exist closed subspace F0 Í F such that F0 and E are lattice isomorphic. As well known that dual space of E is Levi-s, i.e.     sup{ / n = 1, 2,...} in E* exist for every increasing bounded (in the norm) sequences { / n = 1, 2,...} in E*. If sequences space c0 is lattice embeddable in E* then sequences space l¥ is lattice embeddable in E*, within E* is dual space of E. This theorem is proven by Groenewegen in [4]. For Levi-s Banach lattice E, we proof that sequences space c0 is lattice embeddable in E if only if sequences space l¥ is lattice embeddable in E.  
MODEL REDUKSI PADA PARAMETER MARKOV Farikhin, Farikhin
MATEMATIKA Vol 14, No 3 (2011): Jurnal Matematika
Publisher : MATEMATIKA

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (62.162 KB)

Abstract

As well known that the model reduction for large-scale linear dynamical systems based on Krylov subspace is called moments matching. In this method, one or more interpolation points is needed to construct  a certain Krylov subspace. In this paper, we propose the proof of theorem for moment matching at Markov parameter using the theorem which is obtained from standard block Arnoldi algorithm.
ANALISIS KINERJA UNIT USAHA MENGGUNAKAN MODEL CCR (STUDI KASUS PADA APOTEK KIMIA FARMA SEMARANG) Rahmania, Laily; Farikhin, Farikhin; Surarso, Bayu
MATEMATIKA Vol 17, No 3 (2014): Jurnal Matematika
Publisher : MATEMATIKA

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (51.484 KB)

Abstract

Data envelopment analysis (DEA) is a non-parametric technique for performace evaluation. In DEA context, we know two model which are CCR model and BCC model. With these model we break all of decision making units (DMU) into two classess, efficiency DMU and inefficiency DMU. In this note, we discuss CCR model and its application to evaluate DMU’s on Kimia Farma Semarang. Further, we find that dual problem is better than primal problem to evaluate effiency DMU.
HIMPUNAN BILANGAN BULAT NON NEGATIF PADA SEMIRING LOKAL DAN SEMIRING FAKTOR Fatimah, Meryta Febrilian; Puspita, Nikken Prima; ., Farikhin
MATEMATIKA Vol 17, No 1 (2014): Jurnal Matematika
Publisher : MATEMATIKA

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (54.769 KB)

Abstract

Let commutative Semiring S. Ideal on Semiring S defined in the same way with the Ideal on the ring. On Semiring  there are special Ideals such as -ideal, -maximal Ideal and -ideal. Semiringwith a unique -maximal Ideal is called local Semiring. In This paper we will discussed that from non negative integer  we can determined a local Semiring and quotient Semiring.
MATRIKS RELASI PREFERENSI FUZZY TERITLAK DAN APLIKASINYA UNTUK PEMBUATAN KEPUTUSAN Siti, Khabibah; ., Farikhin; Puspita, Nikken Prima
MATEMATIKA Vol 19, No 1 (2016): Jurnal Matematika
Publisher : MATEMATIKA

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (49.46 KB)

Abstract

In the paper, we explore Dempster-Shaver’s theory and fuzzy preference relations for a decision making. Firstly, we discuss some necessary anf suficient conditions for constructing additive consistency fuzzy preference relation. With respect to the Deng et. al.’s work, we combined these to construct a method for decision making. Finally, two examples are presented as illustrations of the effectiveness of the proposed method.
MODEL DINAMIKA PENYEBARAN DBD DENGAN MENERAPKAN TIGA STRATEGI PENGENDALIANNYA ., Kartono; Djuwandi, Djuwandi; ., Farikhin
MATEMATIKA Vol 17, No 1 (2014): Jurnal Matematika
Publisher : MATEMATIKA

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (46.225 KB)

Abstract

The information of the dynamic of dengue fever is needed to build the model of its controlling strategy. Therefore, this research is aimed to develop a mathematical model such that the effectiveness of several controlling strategy for example 3M campaign, treatment to the infected people, andthe applying ofinsecticide can be evaluated. This mathematical model is constructed by classifying the human population into three class that are Suspectible (S), Infected (I) and Removed (R) while the vector population (aedes aegypti mosquito) is assumed belongs to the Infected (I) class. The effectiveness of the controlling strategy is analyzed using maximum Pontryagin principle. The result of this analysis shows that the 3M campaign affects the size of the suspect population.
TEOREMA KEKONVERGENAN FUNGSI TERINTEGRAL RIEMANN . Farikhin, Farikhin
MATEMATIKA Vol 7, No 3 (2004): JURNAL MATEMATIKA
Publisher : MATEMATIKA

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (38.269 KB)

Abstract

Teorema kekonvergenan merupakan bagian yang penting dalam mempelajari  teori  integral. Limit fungsi barisan fungsi yang terintegral Riemann pada suatu interval belum tentu fungsi tersebut juga terintegral Riemann pada interval itu. Dengan demikian diperlukan syarat lain agar limit fungsi juga terintegral Riemann. Tulisan ini bertujuan membahas syarat cukup agar limit fungsi dari barisan fungsi yang konvergenan di mana-mana juga terintegral Riemann. Selanjutnya, dibahas juga syarat cukup agar limit fungsi dari barisan fungsi yang konvergen hampir di mana-mana juga terintegral Riemann.  
NILAI SOLUSI PENDEKATAN SISTEM LINEAR SKALA BESAR MENGGUNAKAN GMRES dkk, Farikhin
MATEMATIKA Vol 11, No 3 (2008): JURNAL MATEMATIKA
Publisher : MATEMATIKA

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (86.678 KB)

Abstract

Many engineering process require the solution of linear system of the form , where A is a  nonsingular real matrix,  , and vector  is solution of the linear system. There are two methods for solving large scale linear system which are full orthogonalization method (FOM) and Generalized minimal residual (GMRES). GMRES is most popular method to solve large scale linear equations. In this paper, we proven that GMRES preserved the magnitude of approximations solution of linear system.
Co-Authors A. Haris A. Rusgiyono Acep Irham Gufroni Adi Ariyo Munandar Adi Suliantoro Ahmad Abdul Chamid Ahmad Lubis Ghozali Aprilia, Maita Aris Sugiharto Arnelli Arnelli B. Raharjo Bambang Irawanto Bambang Irawanto Bambang Subeno Bayu Surarso Bayu Surarso Beta Noranita Bibit Waluyo Aji Budi Warsito Carolin Carolin Catur Edi Widodo D. Ispriyanti Didik Setiyo Widodo Dinar Mutiara Kusumo Nugraheni Djuwandi Djuwandi DONNY IRAWAN MUSTABA Dwinta Rahmallah Pulukadang, Dwinta Rahmallah E. Setiawati Erikha Feriyanto Erlin Dwi Endarwati, Erlin Dwi Esti Wijayanti, Esti F. Ariyanto Faozi, Safik Fauzi, Irza Nur Feriyanto, Erikha Ferry Jie, Ferry Fitika Andraini H. Sutanto Heny Maslahah, Heny I. Marhaendrajaya Iswahyudi Joko Suprayitno J. E. Suseno Kartono . Keszya Wabang Kusworo Kusworo Laily Rahmania, Laily LM Fajar Israwan, LM Fajar M. Izzati M. Nur Madani, Faiq Mansur Mansur Meryta Febrilian Fatimah, Meryta Febrilian Mustafid Mustafid Neza Zhevira Septiani Nikken Prima Puspita Nikken Prima Puspita Nur Khasanah Oky Dwi Nurhayati Pangestika, Vidya Dwi Pradana, Fadli Dony Prantiastio Prastio, Wahyu Tedi Priyono Priyono Purwanto Purwanto R. Hariyati R. Hastuti Rachmat Gernowo Ratri Wulandari Retno Kusumaningrum Rezki Kurniati, Rezki Rinta Kridalukmana Robertus Heri Sulistyo Utomo S. Tana Safik Faozi, Safik Satriani, Rineka Brylian Akbar Siti Khabibah Siti Khabibah Sri Wahyuni Sugito Sugito Suhartono Suhartono Sunarsih . Suparti Suparti T. Windarti Titi Udjiani SRRM Toni Prahasto Udjiani , Titi Udjiani S.R.R.M, Titi Usman, Carissa Devina Uswatun Khasanah W. H. Rahmanto Wardani, Novita Koes Wardianto, Wardianto Warsito , Budi Wicaksono, Mahad Wyne Mumtaazah Putri Yosza Dasril Yully Estiningsih Z. Muhlisin