p-Index From 2020 - 2025
7.103
P-Index
This Author published in this journals
All Journal IAES International Journal of Artificial Intelligence (IJ-AI) Edutech Semantik Techno.Com: Jurnal Teknologi Informasi Bulletin of Electrical Engineering and Informatics JSI: Jurnal Sistem Informasi (E-Journal) Jurnal Ilmiah Kursor Jurnal Transformatika International Journal of Advances in Intelligent Informatics Scientific Journal of Informatics JAIS (Journal of Applied Intelligent System) JOIV : International Journal on Informatics Visualization Sinkron : Jurnal dan Penelitian Teknik Informatika Tech-E Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) JURNAL MEDIA INFORMATIKA BUDIDARMA Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control CogITo Smart Journal JOURNAL OF APPLIED INFORMATICS AND COMPUTING International Journal of New Media Technology MATRIK : Jurnal Manajemen, Teknik Informatika, dan Rekayasa Komputer Jurnal Nasional Pendidikan Teknik Informatika (JANAPATI) Data Science: Journal of Computing and Applied Informatics JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika) Building of Informatics, Technology and Science Indonesian Journal of Electrical Engineering and Computer Science Abdimasku : Jurnal Pengabdian Masyarakat Jurnal Teknik Informatika (JUTIF) Journal of Applied Data Sciences JOURNAL SCIENTIFIC OF MANDALIKA (JSM) Jurnal Pendidikan dan Teknologi Indonesia Jurnal Teknologi Informasi Cyberku Studies in English Language and Education Moneter : Jurnal Keuangan dan Perbankan Scientific Journal of Informatics Journal on Pustaka Cendekia Informatika
Claim Missing Document
Check
Articles

Found 3 Documents
Search
Journal : Building of Informatics, Technology and Science

Penerapan Algoritma Random Forest dalam Prediksi Curah Hujan untuk Mendukung Analisis Cuaca Torhino, Rizal; Andono, Pulung Nurtantio
Building of Informatics, Technology and Science (BITS) Vol 6 No 3 (2024): December 2024
Publisher : Forum Kerjasama Pendidikan Tinggi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bits.v6i3.6404

Abstract

Indonesia's climate diversity leads to different rainfall patterns in each region. This condition presents a major challenge in the effort to produce accurate rainfall predictions, which are important to support effective infrastructure planning and disaster mitigation. The purpose of this research is to analyze the rainfall potential in Purwodadi Sub-district using Random Forest algorithm. In this analysis, several weather parameters such as air pressure, temperature, humidity, and wind speed are used, while rainfall becomes the target variable in the prediction process. The dataset used in this study was obtained from NASA Prediction Of Worldwide Energy Resources (POWER) with a time period between 2000 and 2022. The data is then divided into 70% for training data and 30% for test data. In this study, the Random Forest algorithm was used to classify the likelihood of rain based on existing weather conditions. The implementation results showed that the Random Forest model achieved 100% accuracy on the training data and 92% on the test data, indicating excellent prediction performance. Results from the confusion matrix confirmed that the majority of the model predictions matched the actual data. This finding shows that the weather parameters used are effective in predicting rainfall in Purwodadi sub-district. This research contributes to improving the accuracy of rainfall prediction and opens up opportunities for the development of better weather prediction models, involving more parameters or using other algorithms for more in-depth performance evaluation.
Perbandingan Model Machine Learning dalam Analisis Sentimen Pada Kasus Monkeypox di Media Sosial X Prasetyoningrum, Devi; Andono, Pulung Nurtantio
Building of Informatics, Technology and Science (BITS) Vol 6 No 3 (2024): December 2024
Publisher : Forum Kerjasama Pendidikan Tinggi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bits.v6i3.6447

Abstract

Monkeypox or MPOX, is a zoonotic disease caused by the monkeypox virus, a member of the genus Orthopoxvirus. Monkeypox became a global concern after cases of transmission were reported in various countries, sparking widespread discussion on social media X. This platform is often used by the public to disseminate information and express concerns related to the disease. This study aims to compare the performance of several models in sentiment analysis related to the Monkeypox case on social media X. The models tested include Support Vector Machine (SVM), K-Nearest Neighbors (KNN), Naïve Bayes, and Random Forest (RF). The data used consisted of tweets containing opinions or information about Monkeypox, which were then processed through the stages of text normalization, remove stopwords, and stemming. Furthermore, feature weighting was carried out using the TF-IDF technique and feature selection using the Chi-Square method, resulting in an optimal number of features of 652. The results of the analysis show that SVM provides the highest accuracy of 83%, with a 3% increase from the previous number of features, which was 500. Although KNN and Naïve Bayes showed significant improvements, Random Forest did not experience any significant changes in their performance. The study concluded that SVM is the most effective model in analyzing Monkeypox-related sentiment on social media X. For future research, it is recommended to explore deep learning techniques and the use of larger datasets to improve the accuracy and depth of sentiment analysis.
Pendekatan Machine Learning dengan Teknik Stacking untuk Memprediksi Kualitas Air MinumPendekatan Machine Learning dengan Teknik Stacking untuk Memprediksi Kualitas Air Minum D, Ishak Bintang; Andono, Pulung Nurtantio; Pramunendar, Ricardus Anggi; Winarno, Agus; Darmawan, Aditya Aqil
Building of Informatics, Technology and Science (BITS) Vol 6 No 4 (2025): March 2025
Publisher : Forum Kerjasama Pendidikan Tinggi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bits.v6i4.7014

Abstract

Safe drinking water quality is essential for public health, yet environmental pollution has significantly degraded its quality. Manual methods such as WQI and STORET are inefficient, prompting this study to propose a machine learning-based classification system for more accurate water potability assessment. The Water Potability dataset from Kaggle is used, consisting of 3,276 samples with nine key parameters. The preprocessing stage includes data imputation, normalization, feature engineering, and oversampling with SMOTE. The applied models include LGBM, Random Forest, GBM, and XGBoost, optimized using Bayesian techniques and stacking ensemble to enhance accuracy. Results show that the stacking ensemble achieves an accuracy of 85.38%, precision of 88.02%, recall of 85.38%, and F1-score of 85.23%, outperforming individual models. This system enables real-time water quality monitoring with faster and more accurate results, supporting decision-making in sanitation policies and clean water availability.
Co-Authors Abdussalam Abdussalam, Abdussalam Achmad Ridwan Affandy Agus Winarno, Agus Al zami, Farrikh Al-Fatih, Gilang Fajar Alzami, Farrikh Aria Hendrawan, Aria Arry Maulana Syarif, Arry Maulana Asih Rohmani Asih Rohmani, Asih Bastiaans, Jessica Carmelita Budi Harjo Cahaya Jatmoko Candhy Fadhila Arsyad Catur Supriyanto Catur Supriyanto Catur Supriyanto Catur Supriyanto Catur Supriyanto Catur Supriyanto Chaerul Umam Christy Atika Sari D, Ishak Bintang Dalimarta, Fahmy Ferdian Danang Bagus Chandra Prasetiyo Darmawan, Aditya Aqil Denny Senata Dito, Aliffia Putri Doheir, Mohamed Dwi Eko Waluyo Dwi Puji Prabowo, Dwi Puji Dwiza Riana Edi Noersasongko Edi Noersasongko Edi Noersasongko Egia Rosi Subhiyakto, Egia Rosi Ekaprana Wijaya Eko Hari Rachmawanto Elkaf Rahmawan Pramudya Erna Zuni Astuti Fajrian Nur Adnan Fauzi Adi Rafrastara Firman Wahyudi, Firman Fitri Yakub Guruh Fajar Shidik Hamir, Mun Hanny Haryanto Hartojo, James Harun Al Azies Heru Lestiawan Hidayat, Sholeh Hisyam Syarif Husain Husain I Ketut Eddy Purnama Ibnu Utomo Wahyu Mulyono, Ibnu Utomo Irwan, Rhedy Islam, Hussain Md Mehedul Ivan Maulana Jumanto Jumanto, Jumanto Junta Zeniarja Karis Widyatmoko Khafiizh Hastuti Kiat, Ng Poh Kunio Kondo L. Budi Handoko M Arief Soeleman M. Arief Soeleman M. Arif Soeleman Maria Goretti Catur Yuantari Megantara, Rama Aria Mila Sartika, Mila Minghat, Asnul Dahar Bin Moch Arief Soeleman Moch Arief Soeleman Moch Arief Soeleman, Moch Arief Mochamad Hariadi Mochammad Arief Soeleman Muhammad Munsarif Muhammad Naufal, Muhammad Muljono Muljono Nanna Suryana Herman Ningrum, Novita Kurnia Nita Merlina Noor Ageng Setiyanto, Noor Ageng Nur Azise Ocky Saputra, Filmada Panca Hutama Caniago Paramita, Cinantya Pergiwati, Dewi Pramitasari, Ratih Prasetyoningrum, Devi Puji Purwatiningsih, Aris Pujiono Pujiono Purwanto Purwanto Putra, Angga Permana Raden Arief Nugroho Rafsanjani, Muhammad Ivan Rahmatullah, Muhammad Rifqi Fadhlan Ramadhan Rakhmat Sani ramayanti, ismarita Ricardus Anggi P Ricardus Anggi Pramunendar Rohman, Muhammad Syaifur Ruri Suko Basuki Saputra, Filmada Ocky Saputri, Pungky Nabella Saputro, Wicaksono Agung Saraswati, Galuh Wilujeng Sari Ayu Wulandari Sarker, Md. Kamruzzaman Satriyawibawa, Muhammad Yiko Savicevic, Anamarija Jurcev Senata, Denny Sendi Novianto Shafa, Raihanaldy Ash Shier Nee Saw Sinaga, Daurat Sindhu Rakasiwi Siti Hadiati Nugraini Soeleman, M Arief Soeleman, M. Arief Soeleman, Moch. Arief Soong, Lim Way Sri Winarno Sri Winarno Steven, Alvin Sudibyo, Usman Sukmawati Anggraeni Putri, Sukmawati Anggraeni Sukmono, Indriyo K. Supriyono Asfawi Susanto Susanto Tendi Tri Wiyanto, Tendi Tri Tengku Riza Zarzani N Thifaal, Nisrina Salwa Torhino, Rizal Wellia Shinta Sari Yaacob, Noorayisahbe Mohd Yusianto Rindra Zahrotul Umami, Zahrotul Zainal Arifin Hasibuan