Claim Missing Document
Check
Articles

PROFIL PEMECAHAN MASALAH SISTEM PERSAMAAN LINEAR DUA VARIABEL (SPLDV) SISWA KELAS VIII SMP BERDSARKAN LANGKAH-LANGKAH POLYA Moh. Rian Firdaus; Muh. Hasbi; Sutji Rochaminah
Jurnal Elektronik Pendidikan Matematika Tadulako Vol. 8 No. 1 (2020)
Publisher : Universitas Tadulako

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Abstrak: Penelitian ini bertujuan untuk mendeskripsikan pemecahan masalah siswa kelas VIII dalam menyelesaikan masalah sistem persamaan linear dua variabel (SPLDV) berdasarkan langkah-langkah Polya. Subjek pada penelitian ini terdiri dari 3 siswa yaitu, siswa yang berkemampuan matematika tinggi, sedang dan rendah. Penelitian ini menggunakan metode kualitatif dengan pendekatan deskriptif kualitatif yang didasarkan pada langkah pemecahan masalah yang dikemukakan oleh Polya. Hasil penelitian menunjukkan bahwa subjek yang mempunyai kemampuan matematika tinggi, sedang dan rendah dalam memecahkan masalah matematika SPLDV adalah sebagai berikut: (1) dalam memahami masalah, siswa berkemampuan matematika tinggi dan sedang memahami masalah yang diberikan dengan melakukan pembacaan masalah berulang. Berbeda halnya dengan subjek berkemampuan matematika rendah, walaupun subjek dapat mengidentifikasi informasi-informasi yang tersedia, namun subjek berkemampuan rendah tidak dapat memahami setiap informasi-informasi yang ada pada masalah tersebut walaupun telah melakukan pembacaan masalah secara berulang-ulang, (2) dalam merencanakan pemecahan masalah, subjek yang berkemampuan matematika tinggi dan sedang memiliki rencana penyelesaian yaitu menggunakan metode gabungan antara subtitusi dan eliminasi. Berbeda halnya dengan subjek berkemampuan matematika rendah yang sama sekali tidak memiliki satupun rencana penyelesaian, (3) dalam melaksanakan rencana pemecahan masalah, subjek berkemampuan matematika tinggi dan sedang dapat menerapkan strategi penyelesaian masalah sesuai dengan apa yang direncanakan terlebih dahulu dan menggunakan pengetahuannya tentang suku-suku sejenis, operasi hitung aljabar dan operasi bilangan bulat. Berbeda halnya dengan subjek berkemampuan matematika rendah tidak dapat menyelesaikan masalah dikarenakan tidak dapat merencanakan pemecahan masalah, (4) dalam memeriksa kembali, subjek berkemampuan tinggi melakukan pemeriksaan kembali hasil pekerjaannya sesudah penyelesaian akhir dengan cara mensubtitusi nilai dan yang diperoleh kedalam persamaan (1) dan (2), jika nilai ruas kiri dan ruas kanan sama maka jawaban yang diperoleh benar. Subjek berkemampuan matematika sedang dan rendah tidak melakukan pemeriksaan kembali terhadap pekerjaannya. Kata kunci: Profil Pemecahan Masalah SPLDV,Langkah Pemecahan Masalah Polya Abstract: This study aims to describe the problem solving of eight grade students in solving the problems of the system of two linear equations (SPLDV) based on Polya steps. Subjects in this study consisted of three students namely, students with high math skills, medium and low. The results showed that subjects who have high, medium and low mathematical abilities in solving the mathematical problems of the system of two linear equations are as follows: (1) in understanding the problem of high and medium mathematics students are understanding the problem given by doing repetitive problem reading. Unlike the case with a low-math subject, although the subject can identify the information available, the low-ability subject can’t understand any information that exists on the problem despite repeated reading of the problem. (2) in planning the problem solving of subjects with high and moderate math have a plan of completion that is using the combination method between substitution and elimination. Unlike the case with a low math subject that has absolutely no settlement plan. 3) in implementing the problem solving plan the subject of high and moderate mathematics can apply problem-solving strategies in accordance with what is planned in advance and use his knowledge of similar tribes, algebraic counting operations and integer operations, unlike the subject of mathematical ability Low can ‘t solve the problem because it can ‘t plan the problem solving. (4) in re-examining the subject of high-ability to re-examine the results of his work after the final solution by substituting the values of x and y obtained into equations (1) and (2), if the value of the left and right segments are the same then the answers obtained are correct. Subjects with moderate and low mathematics do not re-examine their work. Keywords: Profile problem solving system of two linear equations, Polya Problem Solving Step
PENERAPAN MODEL PEMBELAJARAN PENEMUAN TERBIMBING UNTUK MENINGKATKAN KEMAMPUAN SISWA KELAS VIII A SMP NEGERI 7 PALU PADA MATERI LUAS PERMUKAAN DAN VOLUME LIMAS Mariyaningsih; Muh. Hasbi; Anggraini
Jurnal Elektronik Pendidikan Matematika Tadulako Vol. 8 No. 3 (2021)
Publisher : Universitas Tadulako

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Penelitian ini bertujuan untuk mendeskripsikan tentang penerapan model pembelajaran penemuan terbimbing untuk meningkatkan kemampuan siswa kelas VIII A SMP Negeri 7 Palu yang berlangsung dalam 2 siklus. Hasil penelitian menunjukkan bahwa pembelajaran dengan menerapkan model pembelajaran penemuan terbimbing dapat meningkatkan kemampuan siswa kelas VIII A SMP Negeri 7 Palu pada materi luas permukaan dan volume limas, dengan enam tahap sebagai berikut: 1) stimulasi, yaitu siswa diberikan rangsangan berupa masalah pada LKS bagian A untuk menemukan luas permukaan dan volume limas; 2) identifikasi masalah, yaitu siswa mengidentifikasi masalah pada LKS bagian A; 3) pengumpulan data, yaitu siswa mengiris alat peraga model limas sehingga membentuk jaring-jaring kemudian menggambar jaring-jaring tersebut pada siklus I, serta melakukan percobaan menemukan rumus volume limas dengan bantuan volume prisma kemudian menggambar model prisma dan limas tersebut pada siklus II; 4) pengolahan data, yaitu setiap kelompok menggunakan data yang diperoleh untuk menemukan dan menyelesaikan luas permukaan dan volume limas pada LKS bagian B dan kegiatan 2; 5) verifikasi, yaitu setiap kelompok mengerjakan tugas tambahan kemudian menukarkan hasil pekerjaannya dengan kelompok tukarnya untuk membuktikan kebenaran rumus luas permukaan dan volume limas serta kebenaran dalam menyelesaikan soal tentang luas permukaan dan volume limas; 6) generalisasi, yaitu siswa menyimpulkan tentang langkah-langkah menemukan luas permukaan dan volume limas serta rumus luas permukaan dan volume limas. Abstract: This study aims to describe the application of guided discovery learning models to improve the ability of class VIII A students of SMP 7 Palu which took place in 2 cycles. The results showed that learning by applying a guided discovery learning model can improve the ability of class VIII A SMP Negeri 7 Palu on the material surface area and volume of pyramid, with six stages as follows: 1) stimulation, ie students are given stimulation in the form of problems in worksheet part A to find the surface area and volume of pyramid; 2) problem identification, namely students identify problems in worksheet part A; 3) data collection, namely students slicing the pyramid model props so that they form nets then draw the nets in the first cycle, as well as conducting experiments to find the pyramid volume formula with the help of prism volume then drawing the prism and pyramid model in cycle II; 4) data processing, that is, each group uses data obtained to find and complete the surface area and volume of pyramid in section B and activities 2; 5) verification, that is, each group is working on additional tasks then exchanging the results of their work with the exchange group to prove the truth of the formula for surface area and volume and the truth in solving questions about surface area and volume of pyramid; 6) generalization, namely students conclude about the steps to find the surface area and volume of pyramid and the formula for surface area and volume of pyramid.Keywords: guided discovery learning model; ability to find and complete the surface area and volume of ​​the pyramid
PENERAPAN MODEL PEMBELAJARAN KOOPERATIF TIPE NUMBERED HEADS TOGETHER (NHT) BERBANTUAN GARIS BILANGAN PADA MATERI PENJUMLAHAN DAN PENGURANGAN BILANGAN BULAT Fevi Andrayana; Muh. Hasbi; Muh. Rizal
Jurnal Elektronik Pendidikan Matematika Tadulako Vol. 9 No. 1 (2021)
Publisher : Universitas Tadulako

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Tujuan penelitian ini adalah untuk memperoleh deskripsi tentang penerapan model pembelajaran kooperatif tipe NHT untuk meningkatkan hasil belajar siswa pada penjumlahan dan penurangan bilangan bulat siswa kelas VII A MTs Alkhairaat Maleni. Jenis penelitian adalah Penelitian Tindakan Kelas. Desain penelitian mengacu pada model Kemmis dan Mc. Taggart, yakni perencanaan, pelaksanaan tindakan, observasi dan refleksi. Penelitian ini berlokasi di MTs Alkhairaat Maleni. Subjek penelitian ini adalah siswa kelas VII A MTs Alkhairaat Maleni yang terdaftar pada tahun ajaran 2017/2018 yang berjumlah 25 siswa. Data yang dikumpulkan pada penelitian ini adalah data aktivitas guru dalam mengelola pembelajaran, data aktivitas siswa dalam mengikuti pembelajaran, data hasil tes awal dan data hasil tes akhir tindakan. Hasil penelitian menunjukkan bahwa pembelajaran kooperatif tipe NHT dapat meningkatkan hasil belajar siswa kelas VII A MTs Alkhairaat Maleni pada materi penjumlahan dan pengurangan bilangan bulat, dengan tahapan yaitu : 1) penyampaian tujuan pembelajaran dan pemberian motivasi siswa, 2) penyajian informasi, 3) penomoran dan 4) pemberian pertanyaan.
PROFILE OF STORY PROBLEM SOLVING OF THE TANGENT LINE ON THE CIRCLE BY STUDENTS OF CLASS IX E SMPN 5 PALU Indriyani Indriyani; Muh. Hasbi; Anggraini Anggraini; Baharuddin Baharuddin
JME (Journal of Mathematics Education) Vol. 9 No. 1 (2024): JME
Publisher : USN Kolaka

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31327/jme.v9i1.2128

Abstract

Completion of story problems by students needs to be profiled so that teachers can know the description or description of students' abilities in solving story problems. This study aims to obtain a profile of the completion of the circle tangent story problem by students of class IX E SMPN 5 Palu. This type of research is descriptive research with a qualitative approach. Data were collected through written tests and interviews. The results of this study showed that SH was able to do the problem correctly as the steps of solving the story problem. Then the results of EZ's solution show that there is an unfinished solution so that the answer obtained is wrong. Then the results of FR's completion showed that he was unable to solve the problem as the steps of solving the story problem so that the answer obtained was incorrect. Based on the results of this study, the researcher draws the conclusion that the profile of solving students' story problems varies based on students' mathematical abilities.
PROFIL KOMUNIKASI MATEMATIS SISWA KELAS X MIPA MA NEGERI 2 KOTA PALU DALAM MENYELESAIKAN SOAL CERITA SISTEM PERSAMAAN LINEAR TIGA VARIABEL : Profile of Mathematical Communication of The 10th Grade of Mipa MA Negeri 2 Palu City in Completing Essays of System of Linear Equation In Three Variables Nurlela Sari; Muh. Hasbi; Anggraini Anggraini
Jurnal Elektronik Pendidikan Matematika Tadulako Vol. 12 No. 3 (2025): Jurnal Elektronik Pendidikan Matematika Tadulako (JEPMT)
Publisher : Universitas Tadulako

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22487/jepmt.v12i3.3250

Abstract

This research aims to obtain students' mathematical communication profile in solving story problems of three-variable linear equation system. This type of research is descriptive research with a qualitative approach. The research subjects consisted of 3 students each with high, medium and low abilities. Data were collected using 2 techniques, namely written task and interviews. Indicators of mathematical communication in this research use indicators of mathematical communication according to NCTM. The results showed:  (1) in indicator of expressing mathematical ideas through writing and spoken, MRH and NNP subjects wrote and explained the example and how to form a linear equation of three variables. While HFK only explained the example. HFK also wrote and explained how to form a linear equation of three variables; (2) in indicator of understanding, interpreting, and evaluating mathematical ideas in writing and spoken, MRH and NNP subjects wrote and explained the steps of solving the problem correctly, while HFK was incomplete in writing and explaining it. MRH and NNP wrote and mentioned the conclusion according to what was asked in the problem, while HFK did not write or mention it; (3) In indicator of using mathematical terms, symbols and structures to model mathematical situations or problems, MRH, NNP and HFK used mathematical symbols and structures in writing example, equations and problem solving steps.
PROFIL BERPIKIR KRITIS SISWA KELAS IX SMP NEGERI 1 TOMINI DALAM MEMECAHKAN MASALAH PADA MATERI PERSAMAAN GARIS LURUS Lilis Lilis; Sutji Rochaminah; Muh. Hasbi
Jurnal Elektronik Pendidikan Matematika Tadulako Vol. 12 No. 4 (2025): Jurnal Elektronik Pendidikan Matematika Tadulako (JEPMT)
Publisher : Universitas Tadulako

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22487/jepmt.v12i4.4096

Abstract

This study aims to describe the critical thinking of class students. IX SMP Negeri 1 Tomini in sloving problems on the material of linear equations straight. The subject in this study were 3 students of class IX A of SMP Negeri 1 Tomini which has a category of students with high mathematical abilities, students with moderate mathematical abilities, and students mathematical abilities lo. This type of research is descriptive research with a quantitative approach, qualitative. This research instrument consists of the main instrument, namely the researcher it self in the supporting instruments in this research are writtten test and interview. The results of this study indicate that DTA and RM completed straight line equation questions by fulfilling all critical thingking criteria starting from the focus, reason, inference, situation, clarity and overview indicator, but DTA and RM have different thingking activities, namely DTA or subject have higt mathematical abilities in completing tasks with solutions which is longer with careful though. While RM or subject low mathematical ability in completing task with solutions in a more concise manner. This is supported by answer data written and interview. While T or subject with mathematical abilities low in completing the task in a very short way, but T fulfilles 5 critical thingking criteria starting from the focus, reason, situation, clarity, and overview indicators. But T does not meet one indicator, namely inference because T cannot conclude the final answer.
ANALISIS KESALAHAN HASIL UAS MATEMATIKA SISWA KELAS VIII SMP N 2 GALANG Alfini Alfini; Muh. Rizal; Muh. Hasbi; Rahma Nasir
Jurnal Elektronik Pendidikan Matematika Tadulako Vol. 13 No. 1 (2025): Jurnal Elektronik Pendidikan Matematika Tadulako (JEPMT)
Publisher : Universitas Tadulako

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22487/jepmt.v13i1.4249

Abstract

This study aims to Getting a description of errors and factors that cause errors in doing UAS for grade VIII students of SMPN 2 Galang, knowing the teachings of 2023-2024. This research is a descriptiveresearch with a qualitative approach. The subject of this study is to take 12 students of grade VIII SMP N 2 GALANG based on the value of UAS results under the KKM and teacher recommendations that can represent the answers of other students' mistakes. The researcher selects the subject by looking at the results of the student's final semester exam. Values that are below the MMC (minimum completeness criteria) will be analyzed for errors. The standard of KKM scores set at school is 75, so that students' UAS scores that are less than 75 are analyzed for errors. The results of this study show the types of mistakes made by grade VIII students of SMP N 2 Galang based on Newman's procedure: (1) errors in understanding. (2) errors in transforming, (3) errors in process skills, and (4) errors in writing the final answer. Factors that cause errors: (1) lack of students' understanding of the material that has been taught. (2) mastery of basic mathematical skills in the form of weak mathematical computing. (3) lack of understanding of concepts that make students easily forget the material that has been learned. (4) the learning model is not optimal, so that students still have difficulties in learning mathematics and tend to consider mathematics as a difficult and confusing subject.
PROFIL PENYELESAIAN SOAL HOTS PADA MATERI VOLUME PRISMA OLEH SISWA KELAS VIII SMPN 2 KASIMBAR: Profile of Solving HOTS Questions on Prisma Volume Material by Class VIII Studens of SMPN 2 Kasimbar Asyita Asyita; Muh. Hasbi; Rita Lefrida; Sukayasa Sukayasa
Jurnal Elektronik Pendidikan Matematika Tadulako Vol. 12 No. 3 (2025): Jurnal Elektronik Pendidikan Matematika Tadulako (JEPMT)
Publisher : Universitas Tadulako

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22487/jepmt.v12i3.4324

Abstract

This research aims to obtain a description of the profile of solving HOTS questions on prism volume material by class VIII students at SMPN 2 Kasimbar based on Polya's steps. This type of research is qualitative research. The subject in this study consisted of one student with high mathematical ability (DA) who was selected from the results of a grouping based on his mathematical ability, then the subject was willing and able to communicate well and was recommended by the mathematics teacher at the school. The results of the research show that the HOTS problem solving profile of high ability (DA) students in solving HOTS volume prism problems is: 1) at the stage of understanding the problem, the DA subject writes down what is known and is asked in the question based on the information he obtained in the question, 2) makes a plan , the DA subject prepares a plan by linking the knowledge he has and the information he obtains to the problem, so that the DA subject prepares a solution plan correctly. 3) carry out the plan, the DA subject carries out the solution plan according to the plan and uses his numeracy skills to get the correct answer. 4) at the stage of re-checking the answer, the DA subject re-checks the answer by carrying out proof and also making a conclusion at the end of the proof. So that DA meets the four indicators that have been presented.
PENERAPAN MODEL PROBLEM BASED LEARNING (PBL) UNTUK MENINGKATKAN HASIL BELAJAR SISWA PADA MATERI ARITMATIKA SOSIAL DI KELAS VII B SMP NEGERI 20 SIGI: Application of Problem Based Learning (PBL) Model to Improve Students' Learning Outcomes on Social Arithmetics Material in Class VII B of SMP Negeri 20 Sigi Suprianto Suprianto; Sutji Rochaminah; Muh. Hasbi
Jurnal Elektronik Pendidikan Matematika Tadulako Vol. 12 No. 3 (2025): Jurnal Elektronik Pendidikan Matematika Tadulako (JEPMT)
Publisher : Universitas Tadulako

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22487/jepmt.v12i3.4327

Abstract

This research aim to obtain a description about application of problem based learning (PBL) that can improve students learning outcomes on Social Arithmetic especially on the subject matter of single interest as well as Gross, Tare and Net in class VII B SMP Negeri 20 Sigi. The type of this research is classroom action research. The design of this research referred to Kemmis and Mc. Teggart’s design. This research was conducted in two cycles. The results of this research indicating that through the application of PBL that can improve student learning outcomes, by following the steps, as follow (1) orientation the students at the problem by providing examples related to Social Arithmetic material in everyday life, (2) organize the students to learn, (3) assist in the investigation of individual and group, (4) develop and present work result, (5) analyze and evaluate problem-solving process.
Co-Authors Abd. Hamid Abdul Hamid Abdul Hamid Akina Akina Alfini Alfini Ali, M. Tawil Made Alyu Pratika Ana Puji Lestari Ana Puji Lestari Andi Rini Oktaviani Anggraini Anggraini Anggraini Anita Anita Anita Aniza Aniza Aniza, Aniza Asyita Asyita Baharuddin Baharuddin Baharuddin Baharuddin Baharuddin Paloloang Baharuddin Paloloang Bakri Bakri Bakri Bakri Bakri M Bakri Mallo Darmiati Darmiati Dasa Ismaimuza Debi Susilawati Desi Mayanti Desti Pujiarsih Dewi Safitri Dini Supriati Dyah Permata Fadillah Fadillah Farah Rahmayanti Fevi Andrayana Fitri, Rinil Fitriani Fitriani Fitriani Samsudin Gandung Sugita Henidarwati I Made Ariana I Nyoman Murdiana I Nyoman Murdiana I Nyoman Murdiana I Nyoman Murdiana Ibni Hadjar Ibnu Hadjar Imam Hanafi Indah Suarni Indriyani Indriyani Intan Rukmana Jaeng, Maxinus Kambe. Sanawati Karniman, Tegoeh S Karniman, Tegoeh S Karniman, Tegoeh S. Lasari, Rahmawati B. Lili Cendana Lilis Lilis Lumentut, Cempaka Prawitasari M. Tawil Madeali Marinus B. Tandiayuk Mariyaningsih Maxinus Jaeng Miftahul Jannah Nurmalb Moh. Rian Firdaus Muh. Rizal Muh. Rizal Murdiana, I. N. MUSTAMIN IDRIS Nuraisyah, Patta Rani Nurhayadi Nurlela Sari Nurmal, Miftahul Jannah Nurseha NURSEHA NURSEHA Nurul Fitriyah Nurul Fitriyah Nurul Inayah Nurvita Nurvita Nurvita Oktaviani, Andi Rini Pratika, Alyu Pribadi, Rahmat Ifal Rahma Nasir Rahmat Ifal Pribadi Rahmawati Ratni, Try Rita Lefrida Rochmat Wijaya Rukmana, Intan Sahib, Sri Ratnasari Samsiah Muhamad Samsudin, Fitriani Selmi SITI MARYAM Siti Maryam Sri Ratnasari Sahib Suarni, Indah Sudarman Bennu Sukayasa Suprianto Suprianto Susilawati, Debi Sutji Rochaminah Tamauni, Syahrial Syahrir Tegoeh S. Karniman Ummi Kalsum Vassita Ratani Atthacariya Widyawaty, Diah Wijaya, Rochmat Winanto, Ari Yunita