Claim Missing Document
Check
Articles

PERBANDINGAN REGRESI ROBUST DENGAN OLS PADA PRODUKSI UBI JALAR PROVINSI JAWA TENGAH TAHUN 2015 Endah Suryaningsih Utami; Abdul Karim
PROSIDING SEMINAR NASIONAL & INTERNASIONAL 2017: Prosiding Seminar Nasional Pendidikan, Sains dan Teknologi
Publisher : Universitas Muhammadiyah Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (495.846 KB)

Abstract

Ordinary Least Square (OLS) or Method of Least Squares (MKT) is one of the methods used to get the estimator parameter values of the regressionmodel, but the resultant estimator is strongly influenced by the outlier data.Although the parameter estimator results are strongly influenced by the data,it can use Robust Regression method to handle it so it is not necessary tothrow out the data, as it may be enough to provide information. The application of the two methods is on the production of sweet potato data per regency and city in Central Java province in 2015. The results showed that the data is not normally distributed, both OLS and robust model. Keywords: OLS, Robust Regression, Sweet Potato Production
PERBANDINGAN METODE ORDINARY LEAST SQUARE (OLS) DAN METODE REGRESI ROBUST PADA HASIL PRODUKSI PADI DI KABUPATEN INDRAMAYU Prichilia Putu Makarti; Abdul Karim
PROSIDING SEMINAR NASIONAL & INTERNASIONAL 2017: Prosiding Seminar Nasional Pendidikan, Sains dan Teknologi
Publisher : Universitas Muhammadiyah Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (756.311 KB)

Abstract

One of the goals of SDGs (Sustainable Devloment Goals) on food security is to end hunger, achieve food security, improve nutrition and promote sustainable agriculture. So that food security is an important concern for the government, especially on rice commodities. In 2013 West Java became the largest producer of production in Indonesia and one district which became the largest rice producing center in West Java is Indramayu District with total production of 1,435,938 tons. OLS (Ordinary Least Square) is a regression method that minimizes the number of quadratic errors. While robust regression is a regression method used when the distribution of the error is not normal or the existence of the influence of the model. In this research, it is found that robust method is better than OLS method. Keywords: Rice, OLS, Robust
EFFECT OF SPATIAL AUTOCORRELATION STRUCTURE OF EMPLOYMENT IN CENTRAL JAVA Devi Sumayya Sara; Abdul Karim
PROSIDING SEMINAR NASIONAL & INTERNASIONAL 2017: Proceeding 3rd ISET 2017 | International Seminar on Educational Technology 3rd 2017
Publisher : Universitas Muhammadiyah Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (787.017 KB)

Abstract

Industry, agriculture and THR sectors are some of the leading sectors in Central Java . Central Java with thecapital city of Semarang City, is the third in Indonesia with the highest population in addition to West Java and East Java. Given the high population density and economic growth rate, it should also be followed by the sector's ability to absorb the available employment. Whereas in reality, the world of work or industry and professional associations often complain that the quality of staff (graduates) has not yet met the required skills demands (competencies). So the need for assessment of the absorption of employment from elementary school to upper for the planning of education system, so that education is more directed to education system oriented to the world of work appropriately and more efficiently with adequate amount and quality can absorbed. Data used in this research is observation data to Central Statistics Agency of Central Java and Ministry of Education and Culture of Central Java for the period of 2015. Observation unit in this research is cities in Central Java , the data used among others the amount of absorption Workforce in general with basic education background  toupper. In addition to employment data, data supporting factors such as workforce, industrial GDP value, agricultural GDP value, THR GDP value, and wage employment is also a research variable. The results of this study are the variables that significantly influence the model are the variables workforce, agricultural GDP value, THR GDP value, and wage employment. While significant variables have significant and significant influence in the spatial model are the variables workforce, industrial GDP value, agricultural GDP value, andTHR GDP value. Keywords: Employment, Spatial Autocorrelation
PEMODELAN REGRESI SPATIAL : PENGARUH INFRASTRUKTUR TRANSPORTASI TERHADAP PRODUK DOMESTIK REGIONAL BRUTO PROVINSI JAWA TENGAH Abdul Karim
PROSIDING SEMINAR NASIONAL & INTERNASIONAL 2017: Prosiding Seminar Nasional Pendidikan, Sains dan Teknologi
Publisher : Universitas Muhammadiyah Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (640.642 KB)

Abstract

Peran penting infrastruktur transportasi suatu daerah diduga kuat mempengaruhi pertumbuhan ekonomi daerah tersebut serta cenderung berdampak pada daerah sekitarnya, pengaruh efek ini biasa disebut efek spillover. Tujuan dari penelitian ini adalah mengetahui seberapa besar pengaruh efek langsung infrastruktur transportasi terhadap Produk Domestik Regional Bruto (PDRB) di Jawa Tegah. Dalam penelitian ini, pemodelan spatial yang dilakukan adalah spatial autoregressive (SAR) dan spatial error model (SEM). Hasil estimasi menunjukkan, efek langsung infrastrukturtransportasi kabupaten/kota di Jawa Tengah tidak berpengaruh signifikanterhadap output dari daerah di mana infrastruktur berada dan kabupaten/kotatetangganya.  Keywords: SAR, SEM, regresi spatial, infrastruktur transportasi, pdrb
PENGUJIAN LAGRANGE MULTIPLIER PADA SPESIFIKASI SPATIAL MODEL PERTUMBUHAN EKONOMI INDONESIA Abdul Karim; Akhmad Fathurrohman; Suhartono Suhartono; Dedy Dwi Prastyo
PROSIDING SEMINAR NASIONAL & INTERNASIONAL 2018: SEMINAR NASIONAL PENDIDIKAN SAINS DAN TEKNOLOGI
Publisher : Universitas Muhammadiyah Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (38.204 KB)

Abstract

Beberapa model ekonometrika didasari pada teknik asimtotik dan terdapat tiga prinsip untuk pembangunan tes hipotesis parametrik. Pengujian tersebut diantaranya : (i) metode Wald, (ii) metode maximum likelihood ratio (LR) dan (iii) metode Lagrange Multiplier (LM). Terdapat uji diagnostik untuk penilaian model yang disebabkan dependensi spatial dan heterogenitas spatial sebagai aplikasi dari prinsip Lagrange Multiplier. Tujuan dari paper ini adalah mempertimbangkan penggunaan uji Lagrange Multiplier untuk menyusun spesifikasi model spatial pertumbuhan ekonomi di Indonesia. Data yang digunakan  adalah  produk  domestic  regional  bruto  (PDRB)  untuk  masing- masing provinsi serta faktor-faktor yang mempengaruhinya bersumber dari Badan Pusat Statistik Republik Indonesia (BPS RI) tahun 2017. Berdasarkan hasil  pengujian  LM  mengindikasikan  bahwa  parameter  rho  dan  lamda (SARMA) berpengaruh signifikan. Dengan demikian, spesifikasi model spatial terbaik adalah model yang menambahkan parameter rho dan lamda, seperti model spatial SAC dan SAC mixed.Keywords:   Lagrange   Multiplier,   Uji   Diagnostik  Spatial,   Spatial   Model, pertumbuhan ekonomi, infrastruktur transportasi.
PENERAPAN MODEL DISCOVERY TERARAH BERBASIS LINGKUNGAN UNTUK MENINGKATKAN HASIL BELAJAR MATA PELAJARAN IPA MATERI STRUKTUR DAN FUNGSITUMBUHAN SISWA KELAS IV SD ISLAM NU PUNGKURAN KECAMATAN SEMARANG TENGAH KOTA SEMARANG TAHUN PELAJARAN 2016/ 2017 Nur Aina Dwi Wulandari; Iswahyudi Joko S; Abdul Karim
PROSIDING SEMINAR NASIONAL & INTERNASIONAL 2017: Prosiding Seminar Nasional Pendidikan, Sains dan Teknologi
Publisher : Universitas Muhammadiyah Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (540.083 KB)

Abstract

This improvement is motivated by the problem of low learning outcomes and critical thinking skills of IPA on the material Structure and Function of PlantSection. Most students' critical thinking skills have not yet been seen and scoredunder the KKM. Therefore, teachers apply environmentally directed discoverylearning model in order to create a fun learning atmosphere. The purpose of thisimprovement is to know the improvement of learning outcomes and criticalthinking skills in science learning materials Structure and Function Part Plantsof fourth graders Semester 1 Islamic elementary school NU Pungkuran DistrictSemarang Central Semarang City Lesson 2016/2017.The implementation oflearning improvement consists of 2 cycles. Cycle I dated October 4, 2016 andCycle II dated October 11, 2016. The results obtained are the increase in thepercentage completeness of student learning outcomes cycle I reached 67%, andcycle II reached 92%. While the achievement of critical thinking skills in the firstcycle reached 58.3% with predicate enough and cycle II increased to 83.3% witha range of intervals from 2.40 to 2.79 predicate enough. The conclusion is thatthe application of environmentally directed discovery learning model canimprove learning outcomes and critical thinking skills of students in sciencelearning materials Structure and Function of Class Section IV Semester 1 SDIslam NU Pungkuran District Semarang Tengah Semarang City Lesson2016/2017.Keywords: discovery, learning outcomes, critical thinking skills.
PERBANDINGAN METODE ORDINARY LEAST SQUARE (OLS) DAN REGRESI ROBUST PADA FAKTOR YANG MEMPENGARUHI ANGKA HARAPAN HIDUP DI PROVINSI JAWA TENGAH Nadya Permata Tungga Dewi; Abdul Karim
PROSIDING SEMINAR NASIONAL & INTERNASIONAL 2017: Prosiding Seminar Nasional Pendidikan, Sains dan Teknologi
Publisher : Universitas Muhammadiyah Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (453.992 KB)

Abstract

This study aims to determine the factors that affect life expectancy in Central Java Province. The analytical method used is OLS (Ordinary Least Square) which is a regression method that minimizes the number of quadratic errors and robust regression method is a regression method used when the distribution of the error is not normal or the existence of the influence of the model. In this study, it was found that robust method is better than OLS method. In this study researchers used secondary data obtained from the Central Bureau of Statistics of Central Java Province in 2014. In this study diporelah results that the two methods are normally distributed. In the OLS and robust methods, significant variables are GRDP, PHBS and Health Services while the insignificant variables in the OLS and robust methods are School Enrollment Rates. However, from both methods the best model is robus method with r square value of 0.4414 Keywords: Education, Health Services, PHBS, PDRB, life expectancy, OLS, Robust method
PEMODELAN PRODUK DOMESTIK REGIONAL BRUTO (PDRB) PROVINSI JAWA TENGAH DENGAN PENDEKATAN SPASIAL AUTOREGRESSIVE MODEL PANEL DATA Ulfatun Khasanah; Abdul Karim; Indah Manfaati Nur
PROSIDING SEMINAR NASIONAL & INTERNASIONAL 2017: Prosiding Seminar Nasional Pendidikan, Sains dan Teknologi
Publisher : Universitas Muhammadiyah Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (555.437 KB)

Abstract

Modeling spatial is modeling that deals with approach point and area .While regression analysis data panel is regression analysis based on data panel toobserve the relation between one variable bound ( dependent variables ) withone or more variables free ( independent variables). Approach used is themodel spatial autoregressive (SAR). Model spatial autoregresive is a modelcombined model regression simple with lag spatial on the variables ofdependent using data cross section . The data used was data gdp and factorswhich influence it namely the local revenue, population, and investment 20112015year Based on Hausman test for the above model SAR is hisq = 0.50389, df = 3, p-value = 0.918. This means that p-value> 0.05 thus, the selected model is SARrandom effects.Keywords :PDRB, Spatial Panel, Spatial Autoregressive (SAR)
PERBANDINGAN REGRESI METODE ROBUST DENGAN METODE OLS STUDY KASUS PENGARUH INFLASI DAN PDRB TERHADAP PENGANGGURAN TERBUKA DI PROVINSI JAWA TENGAH Rofiqoh Istiqomah; Abdul Karim
PROSIDING SEMINAR NASIONAL & INTERNASIONAL 2017: Prosiding Seminar Nasional Pendidikan, Sains dan Teknologi
Publisher : Universitas Muhammadiyah Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (447.684 KB)

Abstract

The least squares method (Ordinary Least Square = OLS) is a widely used estimation method for estimating regression model parameters. This method has assumptions that some of them in real data use often can not be met. If there is sine then the least squares method is inaccurate to estimate the parameters. To solve this problem, one of the methods used is robust regression method. Robust regression was introduced by Andrews (1972) and is a regression method used when the distribution of abnormal error and or some outliers influences the model (Ryan, 1997). The data in this study will compare which model is the best OLS or Robust on Penganngura in Central Java province 2009.Variables used are unemployment as dependent variable and GRDP, Inflation asIndependent variable. The result shows that all significant variables to the unemployment variable will be teteapi data from both models both OLS and show is not normal. But when compared with the OLS model, Robust method is better that R-squared shows as 16.65% and OLS shows 15.56%.Keywords: OLS, Robust Regression, Inflation, GRDP, Unemployment
REGRESI KUANTIL SEBAGAI PENDUGA KADAR TIMBAL (Pb) DALAM TUBUH PEKERJA SPBU DI KOTA SEMARANG Laila Nur Mahmuda; Indah Manfaati Nur; Abdul Karim
Jurnal Statistika Universitas Muhammadiyah Semarang Vol 3, No 2 (2015): Jurnal Statistika
Publisher : Program Studi Statistika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Muham

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (101.141 KB) | DOI: 10.26714/jsunimus.3.2.2015.%p

Abstract

Regresi kuantil merupakan metode yang mempelajari pola antara variabel respon (Y) dengan satu atau lebih variabel prediktor (X). Regresi Kuantil merupakan perkembangan dari metode OLS (Ordinary Least Square) metode ini sangat rentan dipengaruhi adanya data pencilan, pencilan menyebabkan hasil estimasi tidak stabil. Regresi kuantil (Quantile Regression)dikembangkan untuk mengatasi adanya data pencilan tersebut. Dalam menentukan kadar retikulosit di tubuh para pekerja SPBU kota semarang, terdapat beberapa indikator yang dapat digunakan antara lain umur dan kadar timbal. Tujuan dari penelitian ini yaitu untuk memodelkan faktor-faktor yang mempengaruhi kadar retikulosit dengan regresi kuantil. Datayang digunakan dalam penelitian ini adalah data sekunder. Kadar Retikulosit sebagai variabel dependen (Y) dan variabel independen meliputi Umur (X1), dan kadar timbal (X2). Hasil dari penelitian ini adalah model Regresi Kuantil yang digunakan sebagai penduga kadar retikulosit adalah regresi kuantil dengan nilai kuantil 0.1 dengan nilai kadar timbal terbaik 0,028.Kata kunci :Regresi Kuantil, Timbal(Pb).