Claim Missing Document
Check
Articles

The Effects of Particle Mesh and Temperature on Pyrolysis Spirulina platensis Residue (SPR): Pyrolysis Yield and Bio-Oil Properties Siti Jamilatun; Arief Budiman; Ilham Mufandi; Agus Aktawan; Nabila Fauzi; Defiani Putri Denanti
ASEAN Journal of Chemical Engineering Vol 22, No 1 (2022)
Publisher : Department of Chemical Engineering, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ajche.69439

Abstract

Microalgae is the third generation of biomass as renewable energy, a future energy source for making bio-oil. The purpose of this research is to examine the biomass from microalgae Spirulina platensis residue (SPR) using the pyrolysis process, to investigate the effect of particle mesh and temperature on the pyrolysis process, to determine the bio-oil properties, including density, pH, color, flame power, and conversion. Fixed bed reactor used for SPR pyrolysis with dimensions of 4.4 cm outside diameter, 4.0 cm inside diameter, and 60.0 cm reactor height. The temperature controls have been fitted from 300-600 °C combined with a 14-16 °C/minute heating rate. Spirulina platensis residue of 50 grams with various particle mesh (80 and 140 mesh) was fed to the reactor. From the experiment results, the particle mesh and temperature process are influenced by bio-oil yield, water phase, gas yield, biochar yield, conversion, and bio-oil properties, including density, pH, flame power, and color. One hundred forty mesh particles at a temperature of 500 °C showed the highest bio-oil yield with a yield of 22.92%, then the water, charcoal, and gas phases were 27.98, 18.84, and 30.26%, with a conversion of 81.16%. At the same time, 80 mesh particles at 500 °C yielded bio-oil, water, charcoal, and gas phases of 19.66, respectively; 23.10, 27.90, and 29.34%, with a conversion of 72.10%. In addition, density, pH, color, and flame power are described in this study.  
Enhancement of Biogas Production Through Solid-State Anaerobic Co-Digestion of Food Waste and Corn Cobs Shitophyta, Lukhi Mulia; Salsabila, Anisa; Putri, Firanita Angraini; Jamilatun, Siti
Makara Journal of Technology Vol. 26, No. 1
Publisher : UI Scholars Hub

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Although biogas has been primarily produced through liquid anaerobic digestion, this method leads to the floating and stratification of fibers and non-homogeneous mixing, which can reduce the biogas yield. Alternatively, biogas can be produced by the solid-state anaerobic digestion (SS-AD) of organic material with a high solid content, such as corn cobs. We investigated the co-digestion of food waste and corn cobs as a biomass feedstock for SS-AD in biogas production. We measured the effects of the total solid (TS) content, percentage of food waste, and reduction in volatile solids (VS), from which we determined its appropriate kinetic model. We found that the SS-AD of food waste with corn cobs produced a high biogas yield of 543 mL/g VS at a TS content of 22% and a food waste content of 20%. The first-order kinetics model for biogas production during SS-AD of the tested corn cob and food waste yielded an R2 value in the range of 0.91–0.94. The main contributor to the biogas production during the SS-AD of the corn cobs and food waste was the reduction in VS. A positive linear relationship was observed between the biogas yield and the reduction of VS.
Bio-oil from Oil Palm Shell Pyrolysis as Renewable Energy: A Review Joko Pitoyo; Totok Eka Suharto; Siti Jamilatun
CHEMICA: Jurnal Teknik Kimia Vol 9, No 2 (2022): August 2022
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/chemica.v9i2.22355

Abstract

Oil palm shell (OPS) is biomass with high carbon and hydrogen content, so it has the potential to produce renewable energy through the thermochemical method. Pyrolysis is a relatively inexpensive thermochemical method that continuously converts biomass into valuable gas, bio-oil, and char products. Bio-oil is used directly to fuel boilers and furnaces or to produce fuel oil. This article reviews the pyrolysis process of biomass from oil palm shells, discussing the operating parameters that influence the pyrolysis process and the method of upgrading bio-oil. This review shows a relationship between biomass composition (cellulose, hemicellulose, and lignin) and bio-oil yield. The water content in the raw material needs to be controlled at around 10%. The optimum particle size is closely related to the biomass's natural structure and reactor type. The higher the ash and fixed carbon content, the lower the bio-oil yield. The optimum temperature for pyrolysis is between 450-550 ºC. A high heating rate will increase the decomposition of biomass into bio-oil. Particle size and reactor type strongly influence feed rate, residence time, and reaction time. A fluidized bed reactor gives the highest bio-oil yield. Using plastic in co-pyrolysis and catalyst increases the heating value and decreases the oxygenated content.
Experimental Study on The Characterization of Pyrolysis Products from Bagasse (Saccharum Officinarum L.): Bio-oil, Biochar, and Gas Products Siti Jamilatun; Joko Pitoyo; Shinta Amelia; Alfian Ma’arif; Dhias Cahya Hakika; Ilham Mufandi
Indonesian Journal of Science and Technology Vol 7, No 3 (2022): IJOST: VOLUME 7, ISSUE 3, December 2022
Publisher : Universitas Pendidikan Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17509/ijost.v7i3.51566

Abstract

Sugarcane bagasse is one of the most abundant biomasses. This study aims to examine the characteristics of bagasse using a pyrolysis system to produce liquid, solid (Biochar), and gaseous. A fixed bed reactor was installed in pyrolysis with temperature variations from 300 to 600°C. The ultimate and proximate analysis was applied to evaluate the characteristic of bagasse. The experimental result found that the maximum bio-oil was obtained at a temperature of 550°C. Several characterizations were done, including gas chromatography and surface area analysis. The Levoglucosan compound of 78% area. The temperature effect on pyrolysis influenced the O/C ratio, H/C ratio, HHV value, and surface area of biochar. The High Heating Value was obtained from 16.698 to 18.496 kJ/kg. Biochar results indicated that the surface area, average pore size, and total pore volume are 180.3-198.0 m2/g, 1.42-4.33 nm, and 0.11-0.12 nm, respectively. The study also analyzed its composition in biochar.
Optimization Of Wastewater Treatment Installations In The Palm Oil Industry Aster Rahayu; Siti Jamilatun; Irwan Mulyadi
Jurnal Ilmiah Teknik Kimia Vol. 7 No. 1 (2023): JURNAL ILMIAH TEKNIK KIMIA
Publisher : Program Studi Teknik Kimia, Universitas Pamulang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32493/jitk.v7i1.27652

Abstract

The liquid waste generated from the palm oil mill can pollute the environment due to the oils it produces, before being discharged into the environment it is necessary to treat the waste so it does not pollute the surrounding environment. Treatment of wastewater using coagulants will greatly affect the quality of wastewater. This study aims to process wastewater so that it can be disposed of the environment without contaminating the environment, besides that this study aims to compare and find out what types of coagulants are good for handling wastewater, while the coagulants used are Tawas, PAC, Alum Polymer and PAC Polymers. The method used to measure total suspended solids (TSS) is the gravimetric method so that the highest total suspended solids results are obtained using a PAC coagulant, namely 1227 with the lowest average efficiency value of 60.66%.
Multi-Distributed Activation Energy Model for Pyrolysis of Sugarcane Bagasse: Modelling Strategy and Thermodynamic Characterization Siti Jamilatun; Muhammad Aziz; Joko Pitoyo
Indonesian Journal of Science and Technology Vol 8, No 3 (2023): (ONLINE FIRST) IJOST: December 2023
Publisher : Universitas Pendidikan Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17509/ijost.v8i3.60175

Abstract

The multi-distributed activation energy model (multi-DAEM) is the most effective approach for outlining the kinetics model of biomass pyrolysis. The purpose of this study is to identify the optimal number and shape of the DAEM for sugarcane bagasse pyrolysis and to discuss its thermodynamic characteristics using the combination of multi-DAEM and differential thermal analysis (DTA). The heating rate of 10, 30, and 50 °C/min was employed. The results revealed that the multi-DAEM with five pseudo components and Weibull distribution shape gave the lowest relative root mean of the squared error (RRMSE) of 0.66% and 0.41%, respectively. Kinetic and thermodynamic studies showed that the 1st and 4th pseudo components which represent lignin, have activation energy (E0) of 189.6 and 180.6 kJ/mol, and less endothermic or possibly exothermic properties. Meanwhile, the 2nd, 3rd, and 5th pseudo components which represent cellulose, hemicellulose, and moisture have activation energy (E0) of 176.1, 152.2, and 145.6 kJ/mol, respectively, and endothermic properties.
Combustion Quality Analysis of Bio-Briquettes from Mixture of Coconut Shell Waste and Coal with Tapioca Flour Adhesive Dhias Cahya Hakika; Siti Jamilatun; Shafa Zahira; Riska Setyarini; Aster Rahayu; Remmo Sri Ardiansyah
Indonesian Journal of Chemical Engineering Vol. 1 No. 1 (2023): Indonesian Journal of Chemical Engineering
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/ijce.v1i1.452

Abstract

Agroindustry residues can be utilized as a resource for alternative energy sources such as bio-briquettes. Using agro-industry residue is also a solution to reduce pollution caused by biomass waste in the environment. This article highlights the combustion quality analysis of biomass waste in the form of bio-briquettes with binding materials prepared from tapioca flour. The biomass used is a mixture of coconut shell charcoal and coal to improve the quality of the bio-briquettes. In this study, bio-briquettes were manufactured using a screw press system. The combustion quality of bio-briquettes with various percentage compositions (0:100, 25:75, 50:50, 75:25, 100:0) of coconut shell charcoal and coal was investigated, i.e., moisture content, ash content, combustion rate, and calorific value. Results show that the calorific value of most bio-briquettes produced in this study was higher than the standard calorific value according to  SNI Standard No.1/6235/2000 (≥ 5,000 cal/gr). The optimum composition to produce bio-briquette with good quality based on the standard is 75:25 (coconut shell charcoal: coal), which had a moisture content of 7.6325%, ash content of 6.9697%, combustion rate of 0.1833 gr/min, and caloric value of 5833.78 cal/gr.
Review: Biochar from Co-Pyrolysis of Biomass and Plastic Siti Jamilatun; Zulia Arifah; Erna Astuti; Rahayu Aster; Remmo Sri Ardiansyah
Indonesian Journal of Chemical Engineering Vol. 1 No. 1 (2023): Indonesian Journal of Chemical Engineering
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/ijce.v1i1.458

Abstract

Plastic and biomass waste disposal will increase if it is not accompanied by appropriate, efficient, and effective waste treatment. Recent research on the yield of charcoal produced by co-pyrolysis has shown that the product of co-pyrolysis of plastic and biomass raw materials is a beneficial additive with a variety of applications, ranging from soil and water improvement, increasing agricultural yields, fuel cells, supercapacitors, as a support/ catalysts, sustainable chemistry, and carbon sequestration. Therefore researchers need to ensure the quality of the results of co-pyrolysis in the form of biochar obtained from any raw material and process to provide maximum benefits, mainly from biomass and plastic raw materials. This study aims to review the formation of biochar from the co-pyrolysis of plastic and biomass raw materials by examining the raw materials, pyrolysis techniques, and the type of reactor used to identify the appropriate parameters. This review discusses biochar production techniques, pyrolysis technology mechanisms, types of pyrolysis, the type of reactor used, the properties of both biomass and plastic raw materials and the properties of biochar produced from various raw materials for comparison. Biochar will be obtained with maximum yield quality from the results of mixing the raw materials for biomass and plastic and optimal operating conditions. It can be an alternative in the bio-oil and syngas energy sector and reduce carbon emissions.
Removal of Ion Nitrate and Phosphate Using Cocoa Shell Skin Modified With Functional Polymer Aster Rahayu; Nafira Alfi Zaini Amrillah; Nuraini Nuraini; Veranica Veranica; Siti Jamilatun
Elkawnie: Journal of Islamic Science and Technology Vol 9, No 2 (2023)
Publisher : Universitas Islam Negeri Ar-Raniry Banda Aceh

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22373/ekw.v9i2.18260

Abstract

Abstract: Cocoa is a plant that is widely cultivated in Indonesia, one of which is in the Yogyakarta area. On the outside of the cocoa fruit, it is known as the cocoa shell skin. Cocoa shell skin is an agricultural waste that is a simple, cheap, and environmentally friendly development that is used as an adsorbent for nitrate and phosphate removal. This article discusses the observation of the ability of the cacao shell against ion nitrate and phosphate adsorption and then compares it after being modified with a functional polymer. Modification of the surface of cacao shell skin with 2-[(methacryloyloxy)ethyl]trimethylammonium chloride (META) resulted in an improvement; the percentages of removal of ion nitrate and phosphate were 89.67% and 92%, respectively. In addition, this study compared the characterization of materials resulting from the absorption of Cocoa Shell Skin (CH) and Cocoa Shell Skin Modified META (CH-META) for nitrate and phosphate ions using Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM). The modification with META could improve the C-N group and N-H groups on the surface of cacao shell skin. Abstrak: Kakao merupakan tanaman yang banyak dibudidayakan di Indonesia salah satunya di daerah Yogyakarta. Bagian luar buah kakao dikenal dengan kulit cangkang kakao. Kulit cangkang kakao merupakan limbah pertanian yang merupakan pengembangan sederhana yang murah dan ramah lingkungan serta digunakan sebagai adsorben penyerap nitrat dan fosfat. Artikel ini membahas tentang observasi kemampuan kulit cangkang kakao terhadap adsorpsi ion nitrat dan fosfat kemudian adanya perbandingan dengan cangkang cacao setelah dilakukan modifikasi dengan polimer fungsional. Modifikasi permukaan kulit cangkang kakao dengan META menghasilkan peningkatan persentase penyerapan ion nitrat dan fosfat masing-masing sebesar 89,67% dan 92%. Selain itu, penelitian ini membandingkan karakterisasi bahan hasil penyerapan Cocoa Shell Skin (CH) dan Cocoa Shell Skin – Modifikasi META (CH-META) untuk ion nitrat dan fosfat menggunakan Fourier-Transform Infrared (FTIR) dan Scanning Electron Microscopy (SEM). Modifikasi dengan META dapat meningkatkan gugus C-N dan gugus N-H pada permukaan kulit cangkang kakao.
Effectiveness Of Activated Carbon From Coconut Shell Through Potassium Hydroxide Ilham Mufandi; Siti Jamilatun; Dwi Astri Ayu Purnama; Riska Utami Melani Putri
al Kimiya: Jurnal Ilmu Kimia dan Terapan Vol 7, No 2 (2020): al Kimiya: Jurnal Ilmu Kimia dan Terapan
Publisher : Department of Chemistry, Faculty of Science and Technology, UIN Sunan Gunung Djati Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15575/ak.v7i2.7956

Abstract

The aim of this work is to synthesis of activated carbon from pyrolysis of coconut shell through 2 N potassium hydroxide (KOH). Carbon can be produced from material through heating at high temperatures with a porous solid containing 85%-95%. During the heating process, the carbon is only carbonized, and without oxidized in the heating chamber to avoid air leakage. Activated carbon can be used as an adsorbent. The absorption capacity of activated carbon is determined by the surface area of the particles. The absorption ability of activated carbon can be improved through an activation with chemicals such as KOH. Carbon will change in physical and chemical properties. This research used the pyrolysis process at an operating temperature of 550 °C. There were three stages of active carbon production by activating KOH, namely 1) immersion of coconut shell through 2 N KOH with a variable time of 5 days, 2) drying process of coconut shell in sunlight, 3) the burning process of dry coconut shell with the temperature of 500°C, and 4) the KOH activation process by reabsorbing activated carbon using KOH and drying in the sun. The results indicated that the water content of activated carbon was affected by drying time. The testing of the activated carbon water content shows that the quality of activated carbon meets Indonesian Standards (SNI, 1995), which is less than 15%. According to Indonesian Industrial Standard (SII) No.0258-79, the ash content of activated carbon is 2.5%, While the result in this study is exceeded 2.5%.
Co-Authors Adhi Chandra Purnama Adi Permadi, Adi Agus Aktawan, Agus Alfian Ma’arif Amelia, Shinta Anak Agung Istri Sri Wiadnyani Anggun Puspitasari Anisa Salsabila Arief Budiman Arief Budiman Arief Budiman Arief Budiman Arief Budiman Arifah, Zulia Aster Rahayu Aster, Rahayu Auliasari, Putry Ayu Avido Yuliestyan Budhijanto Budhijanto Budhijanto Budhijanto, Budhijanto Budhijanto, B. Defiani Putri Denanti Dhias Cahya Hakika Dhias Cahya Hakika Dhias Cahya Hakika Dita Permata Putri Dwi Astri Ayu Purnama Dwi Astri Ayu Purnama Dwita Sarah Efi Nopianti Eka Noviana Elies Permatasari Eling Widya Suminar Eliyantini Erna Astuti Eva Nurdiana Putri Fajriansya Gonibala Febriani, Annisa Vada Firanita Anggraini H Hadiyanto Hadi Nasbey Hanum, Farrah Fadhillah Hanum, Farrah Hanum Hapsauqi, Iqbal Heidy Oktavia Nisa Ikko Nirwana Luthfiani Ilham Mufandi Ilham Mufandi Ilham Mufandi Ilham Mufandi Ilham Mufandi Ilham Mufandi Imelda Eka Nurshinta Imelda Ika Nurshinta Intan Dwi Isparulita Irfan Maulana Putra Irwan Mulyadi Isparulita, Intan Dwi Joko Pitoyo Joko Pitoyo Joko Pitoyo Joni Aldilla Fajri Karmila Astuti Lee Wah Lim Lia Aslihati Lukhi Mulia Shitophyta Lukhi Mulia Sithopyta Lukman Hakim Lutfiatul Janah M. Idris Martomo Setyawan Maryudi Maryudi Maya Fadilah Muhammad Aziz Muhammad Haryo Setiawan Muhammad Nufail Syafii Muhtadin, Akhmad Sabilal Muthadin , Akhmad Sabilal Mutia Endar Nurhidayah Nabila Fauzi Nafira Alfi Zaini Amrillah Nihanzah, Ardian Surya Putra Nirmalasari, Jiran Nur Aini Aini Nur Kholis Nuraini Nuraini Nurmustaqimah Nurmustaqimah, Nurmustaqimah Nurmustaqimaha, Nurmustaqimaha Nurmutaaqimah Putri, Firanita Angraini Rahayu Aster Rahayu, Aster Ratih Mahardhika Remmo Sri Ardiansyah Resyaldi Pratama Rhomadoni, Firda Rizki Ria Rosania Rifka Alfiyani Ririn Martina Riska Setyarini Riska Utami Melani Putri Riska Utami Melani Putri Rochmadi Rochmadi Rochmadi Rochmadi Rochmadi, R. Rosdamayanti Salsabila, Anisa Setya Wardhana, Budi Setyarini , Riska Shafa Zahira Shinta Amelia Shinta Amelia Shitopyta, Lukhi Mulia Siti Hartini Siti Nurhalizatul Aini Siti Salamah Siti Salamah Soedjatmiko Sofiana, Nurani Sri Ardiansyah, Remmo Sriyana, Ida Suhendra Suhendra Suhendra Taufiqurahman , Muhamad Akmal Totok Eka Suharto Tyas Aji Kurniawan Utaminingsih Linarti, Utaminingsih Veranica Veranica W, Mila Utami Wardhana, Budi Setya Yeni Elisthatiana Yesi Yuniasari Yona Desni Sagita Zahira, Shafa Zahrul Mufrodi Zahrul Mufrodi, Zahrul Zulia Arifah Zulia Arifah