Claim Missing Document
Check
Articles

Comparison of Hexane, Methanol, and Their Mixtures as Solvents for Microalgae Lipid Extraction by Hydrodynamic Cavitation Martomo Setyawan; Siti Jamilatun; Muhammad Nufail Syafii; Resyaldi Pratama
CHEMICA: Jurnal Teknik Kimia Vol 7, No 2 (2020): Desember 2020
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/chemica.v7i2.16803

Abstract

The process of producing biodiesel from microalgae as an effort to solve energy problems is currently constrained by the negative energy balance, which requires more energy to produce than the heating value of biodiesel. The lipid extraction assisted by hydrodynamic cavitation requires less energy extraction than the heating value of biodiesel. The effort to increase the energy efficiency of the hydrodynamic cavitation extraction process is to find a solvent that has a low boiling point. This study aims to improve energy efficiency by using a solvent mixture of hexane and methanol, which has a low boiling point. The results showed that the methanol hexane mixture with a volume ratio of 4:1 gave the lowest mixture boiling point of 51.2 °C with a yield of 3.28% g lipid/ g dry microalgae. The process runs at a temperature of 30 °C with a driving pressure of 5 kg/cm2, with an extraction energy requirement of 2 kJ/g of lipids. This process is feasible to be developed to produce biodiesel from microalgae with a positive energy balance.
Pengaruh Luas Perpindahan Panas Kondensor Terhadap Volume Asap Cair Terkondensasi Hasil Pirolisis Tempurung Kelapa Siti Jamilatun; Nurkholis Nurkholis
CHEMICA: Jurnal Teknik Kimia Vol 3, No 2 (2016): Desember 2016
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (329.414 KB) | DOI: 10.26555/chemica.v3i2.8019

Abstract

One of the products that can be made from coconut shell is making coconut shell carcoal by pyrolysis. In the pyrolysis process also produced liquid smoke, tar and uncondensed gasses. Liquid smoke is a byproduct of the activated charcoal industry has high economic value when compared with discharged into the atmosphere. Liquid smoke is a substance derived from the change of state to a liquid smoke, this process involves a change in the form of process heat transfer to the refrigerant fumes. Liquid smoke obtained simultaneously with the process of making charcoal (carbonization), smoke arising from incomplete combustion piped so that condensation will occur fluid droplets called liquid smoke. For coconut shell weight of 5 kg and 4 pipes condensor, the optimal volume of liquid smoke is 205 ml with a pyrolysis time 90 minutes and the theory of heat transfer surface area 0.076965 m2. For coconut shell weight of 5 kg and 8 pipes condensor, the optimal volume of liquid smoke is 215 ml with a pyrolysis time 90 minutes and the theory of heat transfer surface area 1.027437 m2. For coconut shell weight of 10 kg and 4 pipes condensor, the optimal volume of liquid is 183 ml with a pyrolysis time 300 minutes and the theory of heat transfer surface area 0.060404 m2. For 10 kg weight coconut shell and 8 pipes condensor, the optimal volume of liquid smoke is 205 ml with a pyrolysis time 210 minutes and the theory of heat transfer surface area 0.066801 m2.
The Effect of Single and Double Activation with Potassium Hydroxide 2N on Charcoal from Fir Wood (Casuarina Junghuhniana) Pyrolysis Siti Jamilatun; Eva Nurdiana Putri; Zulia Arifah; Ilham Mufandi
CHEMICA: Jurnal Teknik Kimia Vol 7, No 1 (2020): Juni 2020
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/chemica.v7i1.15651

Abstract

The purpose of this study was to know the influence of the single and double activation by using calcium hydroxide (KOH) with a concentration of 2N. The activation of KOH 2N applied in the activated carbon from pine wood. The activated carbon made through the pyrolysis process with a temperature variation of 500-600 ℃ for about 180 minutes. The experiment performed in two ways: (i) single activation of KOH 2N and (ii) double activation of KOH 2N.  The effects of ash content and Iod absorption content in activated carbon were studied. The results showed that the ash content about 8-30% and Iod absorption content about 317.25-507.60 mg Iod/gram carbon. The results of this study standardized by using the Indonesia National Standards (SNI) method. The result also indicated that the single activation was better than double activation of KOH.
Potensi Produk Cair (Oil Phase dan Water Phase) Pirolisis Mikroalga Sebagai Pengawet Makanan Siti Jamilatun; Martomo Setyawan; Ilham Mufandi; Arief Budiman
CHEMICA: Jurnal Teknik Kimia Vol 6, No 2 (2019): Desember 2019
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/chemica.v6i2.14813

Abstract

Microalgae is one of the oldest living organisms namely Thallophyta (plant lacking roots, stems, and leaves) that have chlorophyll as a pigment to mainly photosynthesis process. Microalgae as the water plant had some characteristics such as high carbohydrate, protein, and lipid content in which can be produced energy (liquid, solid, and gas) by using the pyrolysis process. The raw material in this experiment was used Spirulina platensis as the type of microalgae. The residue of Spirulina platensis was content acid, phenol, dan carbonyl in which this product liquid is potential as a food preservative. The experiment was performed by using the pyrolysis process which is equipped with a cooler (condenser) to condense the combustion vapor. Thermal decomposition was conducted in the pyrolysis reactor with a temperature of 300 ℃, 400 ℃, 500 ℃, and 600 ℃ under atmospheric condition. The result indicated that the pyrolysis proses had oil phase as the top result and water phase as the bottom result. The result from GC/MS analysis reported that the pyrolysis process on temperature of 300 ℃ can produce the oil phase with the phenol content of 6.7 wt.%, acid of 33.03 wt.%, carbonyl of 4.95 wt.%, and Poly Aromatic Hydrocarbon (PAH) of 6.23 wt.%, respectively. Otherwise, the pyrolysis process can produce the water phase (liquid smoke) on temperature 400 °C, 500 °C, dan 600 °C with the phenol content of 0.22 wt.%, acid content of 0.69-9.12 wt.%, carbonyl content of 10.46-13.02 wt.% and PAH of 26.93-45.18 wt.%. The superiority of preservatives from residual Spirulina platensis has a high nitrogenate content from protein decomposition (10.13-31.22 wt.%). High protein content in food preservatives can be used as an additive compound to increase protein intake.
Pyrolysis of Spirulina platensis Residue: Effect of Temperature without and with Fe-oxide catalyst Siti Jamilatun; Tyas Aji Kurniawan; Adhi Chandra Purnama; Irfan Maulana Putra
CHEMICA: Jurnal Teknik Kimia Vol 7, No 2 (2020): Desember 2020
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/chemica.v7i2.18077

Abstract

The limited reserves of fuel must resolve immediately. One of the renewable energy solutions that have the potential to come from biomass sources is microalgae. The advantages of microalgae compared to other biomass is the oil produced, the speed of growth, and it does not interfere with food availability. The processing of residual Spirulina platensis microalgae (SPR) by pyrolysis is exciting to do, does not cause pollution, and the technology is simple. This study's purpose was SPR pyrolysis with a grain size of 140 mesh without and with five (5) wt.% Fe-oxide catalyst. The variables studied were temperature on the yield of bio-oil products, water phase, charcoal, and gas. Pyrolysis was carried out in a fixed bed reactor at 300, 400, 500, 550, and 600 ⁰C. The higher the pyrolysis temperature, the higher the bio-oil yield, with the optimum catalyst at 400 ⁰C produced 15.34% and without a catalyst at a temperature of 500 ⁰C, namely 15.00%. The water yield phase in the range of 300-600 ⁰C is higher for catalyst use (30-39 %) than without catalyst (13.75-22.25%). The higher the pyrolysis temperature, the lower the yield char. The yield of gas without a catalyst was higher in the range of 30.69-38.94% compared to catalyst 12.58-26.18%. At a temperature of 300 ⁰C without a catalyst, the conversion obtained was 48.69%, while with a catalyst, 60.08%
Characterization of Organic Polymer Monolith Columns Containing Ammonium Quarternary As Initial Study For Capillary Chromatography Aster Rahayu; Siti Jamilatun; Joni Aldilla Fajri; Lee Wah Lim
Elkawnie: Journal of Islamic Science and Technology Vol 7, No 1 (2021)
Publisher : Universitas Islam Negeri Ar-Raniry Banda Aceh

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22373/ekw.v7i1.8764

Abstract

Abstract: The polymerization process with a simple step has become the centre of attention of several researchers. Various polymers have been developed, although in general, they use polymerization with a post-modification method. A quaternary ammonium monolith organic polymer has been prepared using a simple single thermal method in this research. 2-(Methacryloyloxy)-N,N,N-trimethylethanaminium chloride was as the monomer, and ethylene dimethacrylate was as crosslinker. The polymerization proceeded in fused-silica capillary (100 mm, 0.32 mm i.d. x 0.45 mm o.d.) using a one-pot approach method. To achieve the perfect macropores, isopropyl alcohol, PEG 400, and ethanol were used as porogen. Characterization of the surface morphology was carried out using a Scanning Electron Microscope (SEM), and the existence of an amine group was characterized by Fourier Transform Infrared Spectroscopy (FTIR). The distribution size of pores in the polymer was in the range of 1.29 to 3.33 µm.Abstrak: Polimerisasi dengan proses yang sederhana dan simpel menjadi pusat perhatian beberapa peneliti. Berbagai macam polimer telah dikembangkan, akan tetapi pada umumnya menggunakan polimerisasi dengan metode post-modification. Pada penelitian ini, polimer organik yang mengandung amonium kuartener dalam bentuk monolit dengan polimerisasi yang menggunakan suhu tunggal dan sederhana telah dilakukan. 2-(Methacryloyloxy)-N,N,N-trimethylethanaminium chloride digunakan sebagai monomer dan ethylene dimethacrylate sebagai crosslinker. Polimerisasi dilakukan dengan metode one-pot aaproach di dalam kapiler silika (100 mm, 0,32 mm i.d. x 0,45 mm o.d.). Untuk mendapatkan makropori yang sempurna, isopropil alkohol, PEG 400 dan etanol digunakan sebagai porogen. Karakterisasi morfologi permukaan dilakukan dengan menggunakan Scanning Electron Microscope (SEM), dan Fourier Transform Infrared Spectroscopy (FTIR) untuk mengidentifikasi gugus fungsi gugus amina yang terdapat pada polimer. Ukuran distribusi pori pada polimer berkisar antara 1,29 sampai 3,33 µm.
Development of Kinetic Models For Biogas Production From Tofu Liquid Waste Lukhi Mulia Shitophyta; Anisa Salsabila; Firanita Anggraini; Siti Jamilatun
Elkawnie: Journal of Islamic Science and Technology Vol 7, No 1 (2021)
Publisher : Universitas Islam Negeri Ar-Raniry Banda Aceh

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22373/ekw.v7i1.8296

Abstract

Abstract: Biogas promises bioenergy to be developed as a renewable fuel to reduce the fossil energy crisis. Biogas raw material can be derived from tofu liquid waste. Biogas is processed by anaerobic digestion. This study aimed to develop a simulation of the kinetic model variations of biogas production from tofu liquid waste. The results showed that the ascending limb of the exponential equation had a greater coefficient (R2 = 1) than the ascending limb of the linear equation (R2 = 0.9574). The descending limb of the linear equation had a better coefficient (R2 = 0.9574) than the descending limb of the exponential equation (R2 = 0.95). The Gaussian model had the greatest R2 of 0.9937. Logistic growth had the greatest coefficient (R2 = 0.9951) compared to modified Gompertz (R2 = 0.9817) and exponential rise to maximum (R2 = 0.9852) in the simulation of cumulative biogas production. The fit model for kinetic biogas production from tofu liquid waste is Gaussian Model.Abstrak: Biogas merupakan salah satu bioenergi yang menjanjikan untuk dikembangkan dalam mengurangi krisis energi fosil. Bahan baku biogas dapat berasal dari limbah cair tahu yang diolah secara anaerobic digestion. Penelitian ini bertujuan untuk mengembangkan variasi model simulasi kinetika produksi biogas dari limbah cair tahu. Hasil penelitian menunjukkan bahwa persamaan eksponensial untuk grafik kenaikan memilki koefisien yang lebih besar (R2 = 1) dibandingkan grafik kenaikan dengan persamaan linier (R2 = 0,9574). Grafik penurunan pada persamaan linier memiliki nilai koefisien lebih besar (R2 = 0,9574) dibandingkan grafik penurunan pada persamaan eksponensial (R2 = 0,95). Model Gaussian menghasilkan nilai  koefisien tertinggi R2 = 0,9937. Logistic growth menghasilkan nilai R2 terbesar (0,9951) dibandingkan modified Gompertz (R2 = 0,9817) dan exponential rise to maximum (R2 = 0,9852) pada simulasi produksi biogas kumulatif. Model yang paling cocok untuk kinetika produksi biogas dari limbah cair adalah model Gaussian.
A Pyrolysis of 80 Mesh Spirulina platensis Residue (SPR) With Fe3O4 Catalyst Siti Jamilatun; Lukhi Mulia Shitophyta; Heidy Oktavia Nisa; Mutia Endar Nurhidayah
Elkawnie: Journal of Islamic Science and Technology Vol 7, No 2 (2021)
Publisher : Universitas Islam Negeri Ar-Raniry Banda Aceh

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22373/ekw.v7i2.8950

Abstract

Abstract: Spirulina platensis Residue (SPR) is obtained from the solid residue of Spirulina platensis extraction, which has high carbohydrate and protein content. Pyrolysis technology will convert SPR into a bio-oil, water phase, char, and gas (CO, CO2, H2, CH4) product with the potential as an environmentally friendly and sustainable fuel. This study aims to obtain data on the optimum conditions and product yield composition of SPR catalytic pyrolysis using the in-situ method.  Pyrolysis occurs in a fixed-bed reactor with SPR 50 g feed and Fe3O4 catalyst (2.5 g and 5 g) at temperature variations of 300-600 °C with an average heating rate of 14.07 °C/min. The higher the pyrolysis temperature, the more bio-oil yield, the optimum at a temperature of 500 ⁰C. The use of 2.5 and 5-gram catalysts obtained bio-oil yields of 25.01 and 17.67 %. The yield of biochar will be lower with increasing pyrolysis temperature. The optimum condition for the gas production was achieved at 300 °C, using a catalyst of 2.5 and 5 grams, the yield of gas was 23.59, and 19.74 %. Moreover, the smaller the specific gravity and the higher the bio-oils pH, the better it is as a vehicle fuel.Abstrak: Spirulina platensis Residu (SPR) diperoleh dari residu padat ekstraksi Spirulina platensis yang memiliki kandungan karbohidrat dan protein tinggi. Teknologi pirolisis akan mengubah SPR menjadi produk bio-oil yang berpotensi sebagai bahan bakar ramah lingkungan dan berkelanjutan. Penelitian ini bertujuan untuk mendapatkan data kondisi optimum dan komposisi yield produk dari pirolisis katalitik SPR dengan metode in-situ. Pirolisis SPR akan menghasilkan produk berupa bio-oil, water phase, char dan gas (CO, CO2, H2, CH4). Pirolisis berlangsung dalam reaktor fixed-bed dengan umpan SPR 50 g serta katalis Fe3O4 (2.5 g dan  5 g)  pada variasi suhu 300-600°C dengan heating rate rata-rata 14,07 °C/min. Semakin tinggi suhu pirolisis semakin banyak yield bio-oil, optimum pada suhu 500 ⁰C. Pemakaian katalis 2,5 dan 5 gram diperoleh yield bio-oil sebanyak 25,01 dan 17,67 %. Yield biochar akan semakin rendah dengan kenaikan suhu pirolisis. Kondisi optimum produk gas dicapai pada 300 °C dengan katalis 2,5 dan 5 gram diperoleh yield gas sebesar 23,59, dan 19,74 %. Hal tersebut mengakibatkan, semakin kecil berat jenis dan semakin tinggi pH bio-oil maka semakin baik sebagai bahan bakar kendaraan.
Effect of Temperature on Yield Product and Characteristics of Bio-oil From Pyrolysis of Spirulina platensis Residue Siti Jamilatun; Yeni Elisthatiana; Siti Nurhalizatul Aini; Ilham Mufandi; Arief Budiman
Elkawnie: Journal of Islamic Science and Technology Vol 6, No 1 (2020)
Publisher : Universitas Islam Negeri Ar-Raniry Banda Aceh

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22373/ekw.v6i1.6323

Abstract

Abstract : Dependence on the use of fossil fuels in Indonesia is still quite high, especially crude oil; if no new energy reserves found, it will disrupt long-term energy availability. Biofuel is a renewable energy source derived from biomass, such as the type of microalgae spirulina platensis (SP). Solid residues from SP extraction still contained high levels of protein and carbohydrates. This solid residue can be processed by pyrolysis to produce bio-oil, water phase, charcoal, and gas. Bio-oil and gas products can use as fuel, charcoal can use for pharmaceutical needs, and the water phase as a chemical can use in food and health. The pyrolysis process carried out in a fixed-bed reactor with temperature ranging from 300-600°C. Heating was carried out by electricity through a nickel wire wrapped outside the reactor. Pyrolysis product in the form of gas condensed in the condenser, the condensate formed measured by weight. Char weight measured after the pyrolysis process completed. At the same time, non-condensable gas calculated by gravity from the initial weight difference of SPR minus liquid weight (bio-oil and water phase) and char. SPR samples were analyzed proximate and ultimate, while bio-oil products examined by the GC-MS method. The experimental results showed that the optimum pyrolysis temperature at 500ºC produced by 18.45% of bio-oil, 20% of the water phase, 32.02 of charcoal, and 29.54% of gas by weight. GC-MS results from bio-oil consisted of ketones, aliphatics, nitrogen, alcohol, acids, while PAHs, phenols, and aromatics not found.Abstrak : Ketergantungan penggunaan bahan bakar fosil di Indonesia masih cukup tinggi terutama minyak mentah, jika tidak ditemukan cadangan energi baru maka akan mengganggu ketersediaan energi jangka panjang. Biofuel adalah salah satu sumber energi terbarukan yang berasal dari biomassa seperti jenis mikroalga spirulina platensis (SP). Residu padat dari ekstraksi SP masih mengandung protein dan karbohidrat yang cukup tinggi. Residu padat ini dapat diproses dengan pirolisis untuk menghasilkan bio-minyak, fase air, arang, dan gas. Produk bio-minyak dan gas dapat digunakan untuk bahan bakar, arang dapat digunakan untuk kebutuhan farmasi, dan fase air sebagai bahan kimia dapat digunakan di bidang makanan dan kesehatan. Proses pirolisis dilakukan dalam reaktor fixed-bed dengan suhu 300-600°C. Pemanasan dilakukan dengan listrik melalui kawat nikel yang dibungkus di luar reaktor. Produk pirolisis berupa gas dikondensasi dalam kondensor, kondensat yang terbentuk diukur beratnya. Berat char diukur setelah proses pirolisis selesai, sementara gas yang tidak dapat dikondensasi dihitung beratnya dari perbedaan bobot awal SPR dikurangi bobot cair (bio-oil dan fase air) dan char. Sampel SPR dianalisis proksimat dan ultimat, sedangkan produk bio-minyak dianalisis dengan metode GC-MS. Hasil percobaan menunjukkan bahwa suhu optimum pirolisis adalah 500ºC yang menghasilkan bio-oil, water phase, arang, dan gas berturut-turut adalah 18,45; 20;  32,02 dan 29,54 % berat. Hasil GC-MS dari bio-oil terdiri dari keton, alifatik, nitrogen, alkohol dan asam, sedangkan PAH, fenol dan tidak ditemukan.
PEMBUATAN ARANG AKTIF DARI TEMPURUNG KELAPA DENGAN AKTIVASI SEBELUM DAN SESUDAH PIROLISIS Siti Jamilatun; Martomo Setyawan; Siti Salamah; Dwi Astri Ayu Purnama; Riska Utami Melani Putri
Prosiding Semnastek PROSIDING SEMNASTEK 2015
Publisher : Universitas Muhammadiyah Jakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Kebutuhan arang aktif semakin meningkat seiring dengan kebutuhan industri akan bahan pembersih dan penyerap dan juga bahan pengemban katalisator. Arang aktif dapat dihasilkan dari bahan-bahan yang mengandung karbon atau dari arang yang diaktivasi untuk mendapatkan permukaan yang lebih luas. Arang aktif dapat mengadsorpsi gas dan senyawa kimia tertentu tergantung besar atau volume pori-pori dan luas permukaan. Penelitian ini bertujuan membuat karbon aktif dari tempurung kelapa dengan pengaktivasi KOH dilakukan satu kali aktivasi ( sesudah pirolisis) dan dua kali aktivasi (sebelum dan sesudah pirolisis). Kualitas arang aktif yang diperoleh dianalisis untuk mengetahui karateristik kadar air, kadar abu,  iodine number dan surface area karbon aktif dari arang tempurung kelapa yang sesuai dengan SII No.0258 – 79. Berdasarkan hasil penelitian disimpulkan bahwa karbon aktif dapat dibuat dari tempurung kelapa dengan terlebih dahulu dilakukan pirolisis dan kemudian dilakukan aktivasi. Untuk mengetahui pengaruh aktivasi maka dilakukan aktivasi satu kali ( sesudah pirolisis) dan aktivasi dua kali (sebelum dan sesudah pirolisis) dengan aktivasi kimia KOH 2N dengan variasi waktu perendaman. Hasil menunjukkan bahwa aktivasi dua kali memberikan hasil iodine number dan surface area lebih tinggi daripada aktivasi satu kali. Karakteristik karbon aktif yang dihasilkan untuk iodine number 300-500 mg I2/gram arang aktiv telah sesuai dengan SII No.0258–79, untuk kadar air, kadar abu belum sesuai dengan standar diatas, surface area 185,447 m2/g atau mengalami peningkatan 35 kali surface area dengan arang tempurung kelapa yang tidak diaktivasi. Arang aktif ini akan digunakan sebagai katalis pada proses pirolisis dan gasifikasi biomassa untuk penelitian selanjutnya.
Co-Authors Adhi Chandra Purnama Adi Permadi, Adi Agus Aktawan, Agus Alfian Ma’arif Amelia, Shinta Anak Agung Istri Sri Wiadnyani Anggun Puspitasari Anisa Salsabila Arief Budiman Arief Budiman Arief Budiman Arief Budiman Arief Budiman Arifah, Zulia Aster Rahayu Aster, Rahayu Auliasari, Putry Ayu Avido Yuliestyan Budhijanto Budhijanto Budhijanto Budhijanto, Budhijanto Budhijanto, B. Defiani Putri Denanti Dhias Cahya Hakika Dhias Cahya Hakika Dhias Cahya Hakika Dita Permata Putri Dwi Astri Ayu Purnama Dwi Astri Ayu Purnama Dwita Sarah Efi Nopianti Eka Noviana Elies Permatasari Eling Widya Suminar Eliyantini Erna Astuti Eva Nurdiana Putri Fajriansya Gonibala Febriani, Annisa Vada Firanita Anggraini H Hadiyanto Hadi Nasbey Hanum, Farrah Fadhillah Hanum, Farrah Hanum Hapsauqi, Iqbal Heidy Oktavia Nisa Ikko Nirwana Luthfiani Ilham Mufandi Ilham Mufandi Ilham Mufandi Ilham Mufandi Ilham Mufandi Ilham Mufandi Imelda Eka Nurshinta Imelda Ika Nurshinta Intan Dwi Isparulita Irfan Maulana Putra Irwan Mulyadi Isparulita, Intan Dwi Joko Pitoyo Joko Pitoyo Joko Pitoyo Joni Aldilla Fajri Karmila Astuti Lee Wah Lim Lia Aslihati Lukhi Mulia Shitophyta Lukhi Mulia Sithopyta Lukman Hakim Lutfiatul Janah M. Idris Martomo Setyawan Maryudi Maryudi Maya Fadilah Muhammad Aziz Muhammad Haryo Setiawan Muhammad Nufail Syafii Muhtadin, Akhmad Sabilal Muthadin , Akhmad Sabilal Mutia Endar Nurhidayah Nabila Fauzi Nafira Alfi Zaini Amrillah Nihanzah, Ardian Surya Putra Nirmalasari, Jiran Nur Aini Aini Nur Kholis Nuraini Nuraini Nurmustaqimah Nurmustaqimah, Nurmustaqimah Nurmustaqimaha, Nurmustaqimaha Nurmutaaqimah Putri, Firanita Angraini Rahayu Aster Rahayu, Aster Ratih Mahardhika Remmo Sri Ardiansyah Resyaldi Pratama Rhomadoni, Firda Rizki Ria Rosania Rifka Alfiyani Ririn Martina Riska Setyarini Riska Utami Melani Putri Riska Utami Melani Putri Rochmadi Rochmadi Rochmadi Rochmadi Rochmadi, R. Rosdamayanti Salsabila, Anisa Setya Wardhana, Budi Setyarini , Riska Shafa Zahira Shinta Amelia Shinta Amelia Shitopyta, Lukhi Mulia Siti Hartini Siti Nurhalizatul Aini Siti Salamah Siti Salamah Soedjatmiko Sofiana, Nurani Sri Ardiansyah, Remmo Sriyana, Ida Suhendra Suhendra Suhendra Taufiqurahman , Muhamad Akmal Totok Eka Suharto Tyas Aji Kurniawan Utaminingsih Linarti, Utaminingsih Veranica Veranica W, Mila Utami Wardhana, Budi Setya Yeni Elisthatiana Yesi Yuniasari Yona Desni Sagita Zahira, Shafa Zahrul Mufrodi Zahrul Mufrodi, Zahrul Zulia Arifah Zulia Arifah